Los biorreactores en la fermentación en estado sólido

dc.audiencecompanies
dc.audiencestudents
dc.audienceresearchers
dc.audienceteachers
dc.audiencegeneralPublic
dc.contributor.authorPérez-Anaya, Galilea
dc.contributor.authorSánchez-Minutti, Lilia
dc.creatorhttps://orcid.org/0009-0003-9674-3465
dc.creatorhttps://orcid.org/0000-0003-4739-5196
dc.date.accessioned2025-01-17T02:44:43Z
dc.date.available2025-01-17T02:44:43Z
dc.date.issued2025-01-17
dc.description.abstractFunción general de los biorreactores: La fermentación es un proceso metabólico que realizan algunos microorganismos para obtener energía y desde el punto de vista operativo ha sido clasificada en estado sólido (FES) y líquido (FEL). La FEL implica el crecimiento de microorganismos en un medio de líquido, mientras que la FES implica su crecimiento sobre partículas sólidas húmedas [1], con humedad suficiente, pero sin flujo libre de agua [2]. El avance de la tecnología ha permitido crear sistemas o dispositivos llamados biorreactores donde es posible llevar a cabo la FES y FEL. En estos sistemas se controlan las condiciones fisicoquímicas de crecimiento, tales como: temperatura, pH, humedad, agitación, concentración de oxígeno, entre otras. Clasificación y descripción de los biorreactores de FES: Los biorreactores de la FES han sido clasificados en cuatro grupos de acuerdo con el tipo de mezclado y aireado: En el grupo 1 están los biorreactores de bandeja que se caracterizan porque el lecho es estático y el aire circula alrededor de la cama sin mucha fuerza. Están compuestos por bandejas de materiales como plástico, madera, bambú o metal, las cuales permanecen fijas mientras el aire circula a través de ellas y son comúnmente empleados a pequeña escala [2]. En estos, la disipación de calor es baja y no se garantizan las condiciones de esterilidad [3]. En el grupo 2 están los biorreactores de lecho compacto, donde el lecho es mixto: se mezcla por ejemplo una vez al día y el aire sopla con fuerza a través de la cama. Están formados por contenedores tubulares rellenos con partículas con aireación forzada desde arriba, abajo o en el centro [2] y pueden utilizarse para estudios de velocidad de flujo de aire [4], sin embargo, la compactación del lecho puede dificultar el control de la temperatura y humedad [3]. En el grupo 3 están los biorreactores de tambor y de tambor giratorio donde el lecho se mezcla continuamente y el aire circula alrededor de la cama sin que lo atraviese sin fuerza. Estos biorreactores mezclan la biomasa sobre un eje central [3], pero la agitación constante puede dañar la estructura del sólido o causar ruptura celular [4]. Se utilizan en procesos donde el control de la temperatura no es estricto y no se generen aglomerados de biomasa. Finalmente, en el grupo 4 se encuentran biorreactores de lecho fluidizado gas-sólido, tambor oscilante y aireados por agitación, caracterizados porque el lecho se agita y el aire sopla con fuerza a través de la cama [1]. Los de lecho fluidizado constan de un recipiente vertical alto y una parte superior ancha, las partículas sólidas se mueven por la inyección de aire en el fondo del biorreactor, ayudando a controlar su temperatura, aunque algunas partículas forman aglomerados que no fluidizan [2, 3]. Estos biorreactores son utilizados en procesos donde se requiere altos niveles de asepsia [4]. Los de tambor oscilante tienen tres tambores concéntricos y perforados, el sustrato se encuentra entre el tambor medio e interior y el aire ingresa a través del tambor interior moviendo los sólidos al tambor exterior. La mezcla se realiza con el movimiento de tambor exterior a tres cuartos de vuelta, son utilizados en procesos a pequeña escala y una limitante es el daño de la biomasa ocasionado por la agitación y el poco volumen de sustrato utilizado en el tambor. Finalmente, los biorreactores aireados con agitación son cilindros con una placa perforada en el fondo y un agitador mecánico en su interior, en estos biorreactores, los sólidos se asientan sobre la placa y se sopla aire desde abajo de la misma, la agitación se puede realizar con un mezclador planetario o helicoidal y esta puede ser intermitente o continua lo que conlleva una alta presión neumática, por lo que son utilizados en procesos donde no se generan aglomerados de biomasa. Retos actuales y conclusión: A pesar del avance de la ciencia y tecnología, el diseño de biorreactores para la FES enfrenta retos significativos, como los problemas que origina la ampliación de la escala, dado que esto provoca la acumulación de calor en el lecho y aunque el problema puede resolverse con el mezclado mecánico, muchos microorganismos son sensibles a este. Otro reto es la dificultad de separación de la biomasa del soporte o matriz [1]. Resolver estos desafíos es crucial para optimizar su uso y ampliar las aplicaciones industriales de la FES.
dc.folioEsmos 103
dc.formatpdf
dc.identificator6
dc.identifier.urihttps://hdl.handle.net/20.500.12371/23914
dc.language.isospa
dc.publisherBenemérita Universidad Autónoma de Puebla
dc.rights.accesopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationCIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA
dc.titleLos biorreactores en la fermentación en estado sólido
dc.typeContribución a publicación periódica
dc.type.conacytcontributionToPeriodical
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Esmos 103.pdf
Size:
514.78 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Esmos 103 infografía.pdf
Size:
430.99 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
82 B
Format:
Item-specific license agreed upon to submission
Description: