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Abstract

Rough Set Theory deals with imperfect knowledge in machine learning. Within Rough

Set Theory, reducts are minimal subsets of attributes that preserve the discernibility

power of the complete set of attributes in a dataset. Reducts are specially useful as

an attribute reduction technique for classification and data storage. Unfortunately,

computing all reducts of a dataset has exponential complexity regarding the number of

attributes. Therefore, we proposed here a hardware approach for computing all reducts.

The proposed platform outperforms previous hardware and software implementations

in terms of runtime. In addition, a new algorithm for computing all reducts that uses

simple operations for candidate evaluation, which is the fastest algorithm for an specific

kind of datasets, was introduced. Furthermore, an experimental study for finding a

relation between some properties of a dataset and the fastest algorithms for computing

reducts, is presented. This study provides a guide for determining the appropriated

algorithm for a specific problem. We proposed finally a new algorithm for computing

all the shortest reducts. This new algorithm outperforms all other state–of–the–art

algorithms for most datasets. In this case, a guide for selecting a priori the fastest

algorithm for computing all the shortest reducts of a specific dataset, was also obtained.
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Resumen

La teoŕıa de los conjuntos rugosos es una teoŕıa relativamente nueva para tratar con

conocimiento imperfecto. En esta teoŕıa, los reductos son subconjuntos de atributos

minimales con la misma capacidad de discernir entre clases del total de atributos en el

conjunto de datos. Los reductos son útiles como una técnica de reducción de atributos

para la clasificación y el almacenamiento de datos. Desafortunadamente, calcular todos

los reductos de un conjunto de datos es un problema de complejidad exponencial. Por

este motivo, en esta investigación doctoral, se propone una plataforma de hardware

que permite calcular todos los reductos. La plataforma propuesta es más rápida que

las plataformas anteriormente reportadas para calcular todos los reductos. Además,

se introdujo un nuevo algoritmo para calcular todos los reductos que usa operaciones

simples para la evaluación de candidatos, con lo cual logra ser el más rápido para un

tipo espećıfico de conjunto de datos. También se presenta un estudio experimental para

encontrar una relación entre algunas caracteŕısticas del conjunto de datos y los algorit-

mos más rápidos para calcular todos los reductos. Este estudio provee una gúıa para

seleccionar a priori el algoritmo más rápido para un conjunto de datos espećıfico. Fi-

nalmente, proponemos un nuevo algoritmo para calcular todos los reductos más cortos.

Este nuevo algoritmo es más rápido que todos los algoritmos reportados anteriormente

para este mismo problema, en la mayoŕıa de los conjuntos de datos. En este caso, se

obtuvo también una gúıa para seleccionar a priori el algoritmo más rápido dado un

conjunto de datos espećıfico.
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Chapter 1
Introduction

Z. Pawlak presented in 1981 [27] a new mathematical theory to deal with imperfect

knowledge in machine learning: Rough Set Theory (RST). Decision systems are mod-

eled in RST as tables of items (rows) described by a set of characteristics (columns).

Today’s data collection considers any potentially useful aspect (attribute) for future

data analysis. Thus, having large decision systems with a huge number of attributes

is common. This fact impacts negatively on the performance of machine learning algo-

rithms [26]. Rough set reduct [? ], defined as a minimal subset of attributes with the

discernibility power of the complete set of attributes, is a key concept within RST. Com-

puting all reducts from a decision system is well known as an NP–hard [40] problem.

Thus, the application of RST is limited by the number of attributes in the dataset.

To deal with larger decision systems, several approximate algorithms have been

proposed [7, 50, 14, 4, 5]. Approximate algorithms generate a subset of reducts or

find approximate solutions instead of reducts. An approximate solution is an attribute

subset preserving the discernibility capacity of the complete set of attributes, but it in-

cludes redundant attributes; or it is an attribute subset that preserves the discernibility

capacity to a certain degree. Since approximate algorithms do not return all the reducts

of a decision system, the development of exact algorithms for reduct computation is

still an active research topic [44, 41, 51, 16, 32].

Computing all reducts requires a high computational effort, and it results, most of

the times, in a large amount of reducts. However, in practice, sometimes computing a

subset of reducts, that satisfy some additional restrictions [45, 17], is enough. A special

case is the computation of all the shortest reducts. This subset is a representative

1



Chapter 1. Introduction 2

sample of all reducts [44]. The shortest reducts are specially useful, for instance, in

data reduction applications and classification [59]. Unfortunately, the computation of

all the shortest reducts is also an NP–hard [40] problem. Thus, the search of new

algorithms for computing the set of all the shortest reducts is a challenging research

topic.

Throughout this PhD research, a new algorithm for computing all reducts of a

decision system as well as a new algorithm for computing all the shortest reducts,

are introduced. Our proposed algorithms operate over the basic matrix (a reduced

representation of the discernibility information in the decision system). In addition,

we have conducted comparative studies with state–of–the–art algorithms. Within this

study, the relation between algorithms’ performance and some characteristics of the

basic matrix is explored. Based on this relation, some guidelines for selecting the

fastest algorithm for a given decision system are concluded.

1.1 The Problem

Rough set reducts can discard attributes in a dataset without degrading the discerni-

bility between objects in different classes. Therefore, reduct computation has been an

active research topic, specially the shortest reducts [16]. Feature selection by means of

rough set reducts is exposed in [57]. In addition, [17] stated that attribute reduction is

one of the most relevant applications of rough sets and enumerate several algorithms

for computing reducts. We find consensus in the literature about the relevance and the

topicality of rough set reducts.

The use of heuristic strategies as those proposed in [58, 7, 15? ] constitute efficient

solutions for computing reducts but they may not find one of the shortest reducts.

Algorithms based on stochastic strategies, such as those proposed in [52, 14, 53, 4]
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cannot return one of the shortest reducts for sure, as discussed in Chapter 3 of this

thesis. Algorithms designed for computing all reducts [41, 44, 51] come as a highly

expensive solution for obtaining the shortest reducts.

This research aims the development of new algorithms for obtaining all reducts

or all the shortest reducts from a decision systems. These are NP–hard problems,

which requires clever pruning strategies for reducing the runtime. The new algorithms

proposed in this work must be competitive with the state–of–the–art algorithms in most

cases and faster for some kinds of dataset. The experimental data consist of decision

systems taken from the UCI machine learning repository [3] as well as synthetic datasets.

1.2 Objectives

The general objective of this thesis is obtaining new algorithms for reduct computa-

tion in decision systems; that must be the fastest in some kinds of decision systems.

Some characteristics of the basic matrix are evaluated for selecting the appropriate

pruning properties for the given problem. Two approaches are explored: the computing

all reducts and computing all the shortest reducts.

The specific objectives are:

1. Finding a relation between some properties of the basic matrix and the fastest

algorithms for computing all reducts.

2. Obtaining a new algorithm for computing all reducts.

3. Finding a relation between some properties of the basic matrix and the fastest

algorithms for computing all the shortest reducts.

4. Obtaining a new algorithm for computing all the shortest reducts.
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1.3 Contributions

From the literature, we found that several hardware implementations were reported as

the fastest solution for computing reducts [46, 47, 48, 13, 19, 49]. Consequently, this

PhD research, presents a new hardware–software platform for reduct computation. This

platform was developed as a hardware implementation of CT–EXT [36]. Our proposed

platform was experimentally compared against a software implementation of CT–EXT,

as well as a hardware implementation of the algorithm BT [34]. These experiments serve

as an assessment of the feasibility of hardware architectures for reduct computation.

Unfortunately, FPGA resources limit the size of the problem that can be solve with

these platforms. Thus, our subsequent research was redirected on to the development

of algorithms for reduct computation. Consequently, a new algorithm for computing all

reducts of a decision system was proposed. This new algorithm is the fastest alternative

for reduct computation on those decision systems whose associated basic matrix has

low density of 1’s. An experimental comparison using synthetic data for studying the

relation between the algorithms’ runtime and the density of 1’s of the basic matrix was

also presented. This relation was experimentally verified over information systems from

the UCI machine learning repository.

Furthermore, a new algorithm for computing all the shortest reducts of a decision

system was developed. Likewise, an experimental comparison using synthetic data for

analyzing the relation between the algorithms’ runtime and the density of 1’s of the basic

matrix was also presented. From this experiment, the proposed algorithm was found to

be the fastest alternative for computing the shortest reducts on those decision systems

whose associated basic matrix has medium or high density of 1’s. This relation was

also experimentally verified over information systems from the UCI machine learning

repository.
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1.4 Thesis Organization

The content of this document are organized as follows. In Chapter 2, some basic

concepts from Rough Set Theory are introduced. Chapter 3 presents a review of the

state–of–the–art algorithms for reduct computation. In Chapter 4, a new hardware

platform for computing all reducts of a decision system is proposed. In Chapter 5, a new

algorithm for computing all reducts of a decision system is proposed. In Chapter 6, a

new algorithm for computing all the shortest reducts of a decision system is introduced.

Chapter 7 presents our conclusions and contributions, as well as the publications related

to this research and the future work.





Chapter 2
Basic Concepts

Rough Set Theory (RST) models objects as entities completely described by a set of

attributes. RST assumes that two objects are indiscernible if their value of every at-

tribute is the same. The mathematical foundations of RST relay on the indiscernibility

relations of objects. In this chapter, the basic concepts of RST are provided.

2.1 Decision System

Information Systems (IS) hold the objects data in RST. A table with rows representing

objects while columns represent attributes or features is the usual representation of

an IS, it is formally defined as a pair IS = (U,A) where U is a finite non-empty set

of objects U = {x1, x2, ..., xn} and A is a finite non-empty set of attributes (features,

variables). For each element in A there is a mapping: a : U → Va. Va is the value

set of a. Attributes in A are further divided into condition attributes C and decision

attributes D such that A = C ∪D, C 6= ∅ and C ∩D = ∅. An IS with D 6= ∅ is called

a Decision System (DS). Table 2.1 shows an example of a DS.

Table 2.1: Example of a decision system, where c0 − c6 are condition attributes and d
is the decision attribute.

c0 c1 c2 c3 c4 c5 c6 d
x1 0 blue medium 3 12 = 1 0 bad
x2 0 blue long 3 13 < 1 1 bad
x3 0 blue medium 3 20 < 1 1 good
x4 0 green medium 2 20 < 1 1 bad
x5 0 blue medium 1 20 > 1 1 bad
x6 0 blue short 3 20 < 1 1 good
x7 0 red medium 3 20 < 1 0 bad
x8 1 blue medium 2 20 < 1 1 bad

7
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In the example of Table 2.1, D = {d}, where d is the decision attribute that de-

termines the class an object belongs to. This example is a decision system with two

classes.

Decision attributes partition of the universe U into decision classes, which lead to

the concept of the positive region of the decision. The set POSB(d), called the B-

positive region of d, is defined as the set of all objects in U such that if two of them

have the same value for every attribute in B, they belong to the same class induced by

d.

For the decision system shown in table 2.1, we have:

POS{c3}(d) = {x4, x5, x8}

POS{c4}(d) = {x1, x2}

POS{c3,c4}(d) = {x1, x2, x4, x5, x8}

2.2 Reducts

The Indiscernibility Relation for a subset of condition attributes B ⊆ C is defined as:

IND(B|D) = {(x, y) ∈ U × U | [d(x) = d(y)] ∨ [∀c ∈ B (c(x) = c(y))]}

where c(x) is the value of the attribute c for the object x, and d(x) is the value of

the decision attribute d for the object x. The indiscernibility relation for B is the set

of all pairs of objects from different decision classes that cannot be distinguished by

considering only the attributes in B, jointly with the set of all pairs of objects that

belong to the same decision class.

For decision systems, we want, most of the times, to discern between objects that

belong to different classes. For this purpose, it is relevant the concept of decision reduct ;
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which we define, in terms of the indiscernibility relation, as follows:

Definition 2.1 Let C be the set of condition attributes and D = {d} be the set con-

taining the decision attribute d of a decision system DS, the set B ⊆ C is a decision

reduct of DS if:

1. IND(B|D) = IND(C|D).

2. ∀c ∈ B, IND(B − {c}|D) 6= IND(C|D).

Decision reducts have the same capability as the complete set of condition attributes

for discerning objects that belong to different classes (Condition 1), and they are mini-

mal with respect to inclusion (Condition 2). We call super–reduct to any set B satisfying

Condition 1, regardless of Condition 2. Hereinafter, for simplicity, we will call reducts

to the decision reducts.

The intersection of all reducts of a decision system is called the core, i.e., the core

of a decision system is the set of those attributes that appear into all the reducts.

2.3 The Discernibility Matrix

Discernibility relations are usually stored in a symmetric |U | × |U | matrix defined as

the discernibility matrix. Every element mij from the discernibility matrix DM can be

defined as

mij =

 {c ∈ C : c(xi) 6= c(xj)} for d(xi) 6= d(xj)

∅ otherwise
(2.1)

Table 2.2 shows the discernibility matrix for the decision system shown in table 2.1

as an upper triangular matrix (empty sets are omitted for clarity).
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Table 2.2: Discernibility matrix of the decision system shown in Table 2.1.
x ∈ U x1 x2 x3 x4 x5 x6 x7 x8

x1 {c4, c5, c6} {c2, c4, c5, c6}
x2 {c2, c4} {c2, c4}
x3 {c1, c3} {c3, c5} {c1, c6} {c0, c3}
x4 {c1, c2, c3}
x5 {c2, c3, c5}
x6 {c1, c2, c6} {c0, c2, c3}
x7

x8

From DM , the discernibility function (fDM) can be defined. This is a Boolean

function representing the presence of the corresponding attribute (True) or its absence

(False) in DM .

fDM = ∧{∨c∗ij : 1 ≤ j ≤ i ≤ |U |,mij 6= ∅} (2.2)

where ∨c∗ij denotes the logical disjunction of all the variables corresponding to the

attributes in mij.

From the discernibility matrix of Table 2.2, we have:

fDM = (c∗4 ∨ c∗5 ∨ c∗6)∧ (c∗2 ∨ c∗4 ∨ c∗5 ∨ c∗6)∧ (c∗2 ∨ c∗4)∧ (c∗2 ∨ c∗4)∧ (c∗1 ∨ c∗3)∧ (c∗3 ∨ c∗5)∧

(c∗1 ∨ c∗6) ∧ (c∗0 ∨ c∗3) ∧ (c∗1 ∨ c∗2 ∨ c∗3) ∧ (c∗2 ∨ c∗3 ∨ c∗5) ∧ (c∗1 ∨ c∗2 ∨ c∗6) ∧ (c∗0 ∨ c∗2 ∨ c∗3)

2.3.1 The Basic Matrix

The Binary Discernibility Matrix is a binary representation of DM, where columns

represent single condition attributes and rows represent pairs of objects belonging to

different decision classes. The discernibility element m(i, j, c) for two objects xi and xj

and a single condition attribute c ∈ C is given in a binary representation, such that:
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m(i, j, c) =

 1 if c(xi) 6= c(xj)

0 otherwise

Table 2.3 shows the binary discernibility matrix of the decision system shown in

Table 2.1.

Table 2.3: Binary Discernibility Matrix of the decision system in Table 2.1.
c0 c1 c2 c3 c4 c5 c6

x1, x3 0 0 0 0 1 1 1
x1, x6 0 0 1 0 1 1 1
x2, x3 0 0 1 0 1 0 0
x2, x6 0 0 1 0 1 0 0
x4, x3 0 1 0 1 0 0 0
x4, x6 0 1 1 1 0 0 0
x5, x3 0 0 0 1 0 1 0
x5, x6 0 0 1 1 0 1 0
x7, x3 0 1 0 0 0 0 1
x7, x6 0 1 1 0 0 0 1
x8, x3 1 0 0 1 0 0 0
x8, x6 1 0 1 1 0 0 0

The Simplified Binary Discernibility Matrix is a reduced version of the binary dis-

cernibility matrix after applying absorption laws. In Testor Theory [20], this concept is

called Basic Matrix. Hereinafter, we will refer to this simplified representation as basic

matrix.

Table 2.4: Basic Matrix of the Binary Discernibility Matrix shown in Table 2.3.
c0 c1 c2 c3 c4 c5 c6

0 0 0 0 1 1 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
0 0 0 1 0 1 0
0 1 0 0 0 0 1
1 0 0 1 0 0 0
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Definition 2.2 Let BDM be a binary discernibility matrix and rk be a row of BDM .

rk is a superfluous row of BDM if there exists a row r in BDM such that ∃i|(r[i] <

rk[i]) ∧ ∀i|(r[i] ≤ rk[i]), where r[i] is the i-th element of the row r.

The basic matrix is obtained by removing every superfluous row from the binary

discernibility matrix. Table 2.4 shows the basic matrix from the binary discernibility

matrix of Table 2.3. An important fact is that all reducts of a decision system, can be

computed from this reduced matrix [56].



Chapter 3
Related work

This chapter presents a review of the related work reported in the literature for reduct

computation. Given the close relation between the concept of reduct from RST and

the concept of typical testor from Testor Theory [6], algorithms developed for typical

testor computation can be applied to reduct computation [22]. Thus, the most relevant

algorithms reported for typical testor computation are also included in this chapter.

The content of this chapter are structured as follows: Section 3.1 presents the most

relevant approximate algorithms for computing reducts. In Section 3.2, exact algorithms

of the state–of–the–art for computing reducts are discussed. In Section 3.3, some of

the most relevant hardware architectures reported for computing reducts are presented.

Finally, in Section 3.4, our concluding remarks on this literature review are given.

3.1 Approximate Algorithms for Reduct Computa-

tion

We present a taxonomy of approximate algorithms for computing reducts in Figure 3.1.

3.1.1 Algorithms for Computing a Single Reduct

QUICKREDUCT [7] is an algorithm that adds, one at a time, the attribute with the

highest significance. The significance of an attribute is evaluated as the number of

objects included into the positive region when the attribute is considered. This is one

of the earliest approaches to approximate computation of a single reduct.

The algorithms reported in [50] (RA–Entropy, RA–Roughness and RA–QS–Elements)

13
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Approximate algorithms

Rough Set Theory

Single Reduct
� Chouchoulas and Shen [7]

QUICKREDUCT

� Wang and Wang [50]
RA–Entropy
RA–Roughness
RA–QS–Elements

� Yang et al. [55]

� Jiao et al. [18]
SDCRS
FSDC–HS

Some Reducts
� Wroblewski [53]

� Jensen and Shen [14]
GenRSAR
AntRSAR

� Wang et al. [52]
PSORSFS

� Chen et al. [4]
RSFSACO

Testor Theory

Some Typical Testors
� Alba-Cabrera et al. [2]

UMDA

� Sanchez-Diaz et al. [37]
HCTT

� Piza-Davila et al. [28]
PHC

� Piza-Davila et al. [29]
CHC

Figure 3.1: Taxonomy of approximate algorithms for computing reducts.

use different strategies for evaluating the attribute significance, and operate over the dis-

cernibility matrix. However, in their search strategy, they are similar to QUICKREDUCT.

The use of binary cumulative operations for evaluating candidate subsets over the

binary discernibility matrix was introduced in [55]. This is also a greedy algorithm,

similar to QUICKREDUCT in its search strategy and the evaluation of attribute sig-

nificance. However, the new candidate evaluation process reduces the runtime required

for computing a single reduct, according to their experiments.

The method proposed in [18] subdivides the dataset to reduce the runtime of com-

puting a single reduct. The complete decision system is divide into a master–table and

several smaller sub–tables. Finally, the results are merged to obtain the reducts of the

original decision system. Two algorithms are proposed (SDCRS and FSDC–HS) using

different subdivision strategies.

3.1.2 Algorithms for Computing Some Reducts

Several stochastic algorithms have been developed to compute locally shortest reducts.

These algorithms may find many reducts in a short time but global shortest reducts may
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not be included in the result. The genetic algorithms proposed in [53] encode candidates

as bit strings with a positional representation of attributes. The fitness functions depend

on the number of attributes in the candidate, penalizing those candidates with a large

number of attributes. A second optimization parameter is the number of pairs of objects

that can be discerned by the given candidate. A good point of genetic algorithms is

that the use of a fitness function leads the search down to a set of reducts with the

desired properties. GenRSAR [14] is a simple algorithm that also uses a genetic search

strategy in order to find reducts, but operates over the discernibility function.

Other bio-inspired approaches to reduct computation are based on Ant Colony Op-

timization (ACO): AntRSAR [14], RSFSACO [4]; and Particle Swarm Optimization

(PSO): PSORSFS [52]. These stochastic approaches do not require complex operators

such as mutation and crossover used in genetic algorithms. On the contrary, ACO and

PSO relay on simple mathematical operations, which lead to shorter runtimes.

3.1.3 Algorithms for Computing Some Typical Testors

From Testor Theory, in [2] the UMDA algorithm was proposed, which is based on the

Univariate Marginal Distribution Algorithm as the core of the search strategy. This

approach is a fast alternative to genetic algorithms for computing a subset of typical

testors (reducts).

In [37] a Hill-Climbing algorithm (HCTT) that incorporates an acceleration opera-

tion at the mutation step was introduced. This new algorithm provides a more efficient

exploration of the search space than previous stochastic algorithms for computing a

subset of typical testors. In [28] a parallel acceleration (PHC) of HCTT, taking advan-

tage of the intrinsic parallelism of this kind of algorithms was proposed. Later, in [29]

a CUDA–based implementation (CHC) of these algorithms was presented. CHC takes

advantage of GPU computing for speeding up the parallel search process of PHC.
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3.2 Exact Algorithms for Reduct Computation

In Figure 3.2, we propose a taxonomy of the reported exact algorithms for computing

reducts. We use the taxonomy shown in Figure 3.2 to organize the contents of this

section.

Exact algorithms

All Reducts

Rough Set Theory
� Starzyk et al. [41]

Expansion Algorithm

� Wang [51]
SRGonCRS
RGonCRS

� Strakowski and Rybiński
[43]

Testor Theory
� Ruiz-Shulcloper et al. [35]

BT & TB

� Santiesteban and Pons-
Porrata [39]

LEX

� Sanchez and Lazo [36]
CT–EXT

� Lias-Rodŕıguez and
Pons-Porrata [23]

BR

� Alba-Cabrera et al. [1]
YCC

Shortest Reducts

Rough Set Theory
� Susmaga [44]

SRGA

� Lin and Yin [25]

� Zhou et al. [59]
CAMARDF

� Jensen et al. [16]
RSAR-SAT

Figure 3.2: Taxonomy of exact algorithms for computing reducts.

3.2.1 Algorithms for Computing all Reducts

An early method for computing all reducts of a decision system (Expansion Algorithm)

was proposed in [41, 42]. This is a divide and conquer approach. On each step, the

absorption laws are applied over the incoming discernibility matrix to obtain a basic

matrix. Then, the redundant attributes are compressed at each recursion level. One of

the most discerning attributes is selected (in the same way as QUICKREDUCT) and

the problem is divided into two sub–problems:

� Finding reducts containing the selected attribute. Thus a recursive function is

called with a new basic matrix, having only those rows where the selected attribute
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does not appear.

� Finding reducts that do not contain the selected attribute. Thus a recursive

function is called with a new basic matrix, removing the column corresponding

to the selected attribute.

The base case in the recursion is reached when each attribute in the incoming discerni-

bility matrix appears in a single row. In this way, a set of super–reducts is obtained

and all supersets must be removed in order to obtain the reduct set.

RGonCRS [51] is an algorithm for computing all reducts. This is a very elaborated

approach that works over the dataset instead of the basic matrix. First, RGonCRS com-

putes the core, and then searches for reducts as supersets of the core. It has a recursive

implementation, where contributing attributes are selected as in QUICKREDUCT.

In [51] a second algorithm called SRGonCRS is proposed, which subdivides the dataset

and computes the reducts incrementally.

Different variants (DT, DISC FUNCTION and CANDIDATE REDUCTS) for sub-

dividing a reduct computation problem were proposed and discussed in [43]. They

also discuss the conditions for subdividing the problem, and introduce a criterion for

selecting the best subdivision method.

3.2.2 Algorithms for Computing all Typical Testors

One of the first works on the computation of all typical testors (TT) was presented

in [35]. In this work, two similar algorithms were presented (BT and TB). These

algorithms codify a subset of features as a binary word with as many bits as features

in the dataset. A 0 represents the absence of the corresponding feature in the current

subset while a 1 represents its inclusion. In this way, candidate subsets are evaluated in

the natural ascending order induced by the binary numbers (BT) or the reverse order
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(TB). The pruning of the search space is based on the minimality condition of a TT

and a convenient arrangement of the basic matrix associated to the dataset. Finally,

testors found by these algorithms must be filtered in order to remove any non typical

testor.

The main ideas behind LEX [39] are a new traversing order of candidates (which

resembles the lexicographical order) and the concept of gap. In LEX, the typical con-

dition is verified first and only for those potentially TT, the testor condition is checked.

The concept of gap allows to avoid the evaluation of subsets of a candidate that is a TT

or a non–testor and it includes the last feature of the dataset, in the traversing order.

CT–EXT [36], is an algorithm for computing all TT. Following a traversing order

similar to that in LEX, this algorithm searches for testors without verifying the typical

condition. This way, in comparison to LEX, a larger number of candidates are evaluated,

but the cost of each evaluation is lower. Results from experiments show that CT–EXT

is faster than all previous algorithms in most datasets. Afterwards, BR [23], a Recursive

algorithm based on Binary operations. BR is similar to LEX, but its recursive nature

encloses a great improvement. Given a candidate subset, the remaining features are

tested a priori and those being rejected are excluded from subsequent evaluations.

In [38] a cumulative procedure for the CT–EXT algorithm was presented. This fast-

CT EXT implementation drastically reduces the runtime for most datasets at no extra

cost. In [24] the gap elimination and column reduction are added to BR. This fast-BR

algorithm is, no doubt, the one evaluating the minimum amount of candidates in the

state–of–the–art. The main drawback of fast–BR and BR is, as in LEX, the high cost

of evaluating the typical condition for each candidate.

YYC [1], is another testor–finding algorithm. This algorithm computes the typical

testors incrementally over the rows of the basic matrix. Although they claim that this

algorithm verifies less candidates than previous alternatives, two weak points should
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be addressed. First, BR was not included in their comparisons; and second, in YYC

the evaluation cost for a candidate is high compared to previous algorithms. YYC

verifications involve computing the Hamming weight.

3.2.3 Algorithms for Computing all the Shortest Reducts

In [44], after a strong discussion on reduct computation and the role of the shortest

reducts within RST applications, two algorithms were presented. One for computing

all k-reducts (reducts with length no greater than k), and another one to compute all

the shortest reducts (SRGA). Both algorithms were built on top of the Modified Reduct

Generation Algorithm (MRGA), which is the core proposal of the author. MRGA in-

troduces the application of absorption laws over the discernibility function, which is

a representation of the discernibility information; this allows reducing the runtime in

comparison to previous algorithms. However, in this approach, every candidate is evalu-

ated looking for superfluous attributes. This is an operation with a high computational

cost, which reduces the performance of the algorithm in some cases.

In [25], a heuristic approach to reduce the runtime of computing the shortest reducts

is presented. This heuristic consists in finding a single short reduct and then, pruning

the search space by considering only those attribute combinations with no higher length.

The main drawback of this algorithm is that the second step searches for reducts with

no additional pruning strategies; thus it explores all possible attribute combinations,

which is infeasible in most practical cases.

The algorithm proposed in [59] (CAMARDF) operates over the reduced discerni-

bility function which is a representation of the discernibility information after applying

absorption laws. Furthermore, CAMARDF sorts the attributes to be processed at each

recursion level by their significance. In this way, those attributes that discern more pairs

of objects confused by the current candidate, are added first. This strategy reduces the
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search space; however, computing the attribute significance has a high computational

cost.

Although originally intended for computing a single minimal reduct, the algorithm

proposed in [16] (RSARSAT) can be modified in order to obtain all the shortest reducts

of a decision system. The method introduced in this work reduces the problem of finding

a reduct from the discernibility function to the SAT problem [9].

3.3 Hardware Architectures for Reduct Computa-

tion

In Figure 3.3, we propose a taxonomy of the reported hardware architectures for com-

puting reducts. We use the taxonomy shown in Figure 3.3 to organize the contents of

this section.

Hardware architectures

Rough Set Theory

� Tiwari and Kothari [46]

� Tiwari et al. [47]

� Tiwari et al. [48]
quick reduct

� Kopczynski et al. [19]
DM–Reduct
DT–Reduct

Testor Theory

� Cumplido et al. [8]
Brute Force

� Rojas and Cumplido [33]

� Rojas et al. [34]
BTHW

Figure 3.3: Taxonomy of hardware architectures for computing reducts.

3.3.1 Hardware Architectures for Computing Reducts

A parallel acceleration of the algorithm presented in [55], for reduct computation from

a binary discernibility matrix, was developed in [46, 47]. This FPGA implementation

computes a single reduct for object identification into an intelligent robot. In [48] a
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quick reduct algorithm, similar to that presented in [7], is proposed and implemented

in a hardware fashion. In [49] a thorough survey of FPGA applications in rough set

reduct computation is presented.

The authors of [19] proposed two hardware architectures for single reduct compu-

tation: DM–Reduct, which operates over the discernibility matrix; and DT–Reduct,

which computes reduct taking a decision table as input. Although the authors claim

that a huge acceleration is achieved, the experiments presented in [19] to validate their

results are performed just over a small dataset; an this does not imply its applicability

to larger cases where such acceleration is actually needed.

3.3.2 Hardware Architectures for Computing Typical Testors

From the Testor Theory, several attempts by means of FPGA implementations, to

overcome the complexity of the problem of computing all typical testors have been

reported. In a first work [8], an FPGA–based brute force approach for computing testors

was proposed. This first approach did not take advantage of dataset characteristics to

reduce the number of candidates to be tested; thus all 2n combinations of n features

have to be tested. Then, in [33] a hardware architecture implementing the BT algorithm

for computing typical testors was introduced. These two works compute a set of testors

on the FPGA device while the typical condition has to be evaluated afterwards by the

software component in the hosting PC. Thus, in [34] a hardware–software platform

for computing typical testors that implements the BT algorithm, similar to [33], was

proposed; but it also includes a new module that eliminates most of the non typical

testors before transferring them to a host software application for a final filtering.
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3.4 Concluding Remarks

From our literature review, we noticed that the development of algorithms from Testor

Theory is biased to find all typical testors of a decision system. Algorithms from Rough

Set Theory, on the other hand, are mainly divided into three categories:

� Algorithms for computing a pseudo–optimal reduct according to a criterion (which

is, most of the time, the length of the obtained reduct).

� Algorithms for computing one of the shortest reducts.

� Algorithms for computing all reducts.

The most prolific research area in Rough Set Theory is the development of algorithms

for computing a pseudo–optimal reduct.

We found that algorithms for computing all reducts [42, 51] and algorithms for

computing all the shortest reducts [44, 59] have several disadvantages since they do not

work over the basic matrix, and they use complex data representations. Most of the

ideas for pruning the search space in these algorithms can be found in Testor Theory

as well, although they are expressed with a different nomenclature.

Hardware architectures for computing reducts are mainly focused on computing a

single pseudo–optimal reduct [46, 47, 48, 13, 19, 49]. However, this problem is out of

the scope of this PhD research.

Algorithms for computing typical testors operate over the basic matrix. It is im-

portant to highlight that computing the basic matrix from the original dataset has

quadratic complexity regarding the number of objects in the dataset, while comput-

ing all typical testors has exponential complexity regarding the number of attributes.

Therefore, in most large datasets, it is better to work over the basic matrix. Properties

used by these algorithms are implemented by means of Boolean operations and bit ma-
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nipulations, which lead to faster implementations. We identified fast–CT–EXT [38] and

fast–BR [24] as the fastest algorithms reported in the literature for computing typical

testors.

Hardware architectures reported in Testor Theory [8, 33, 34] are focused on com-

puting all typical testors, and they make a great runtime reduction regarding software

implementations.





Chapter 4
Hardware Architectures for
Speeding up Reduct Computation

From our preliminary literature review, we found that hardware implementations have

been reported as the fastest approach to reduct computation [46, 47, 48, 13, 19, 49]. In

addition, from Testor Theory, several FPGA–based platforms for computing all typical

testors (reducts) have been also reported [8, 33, 34]. For this reason, our first step was

developing a hardware implementation of the CT–EXT algorithm [36]; which is one of

the fastest algorithms for typical testor (reduct) computation reported in the literature.

The rest of this chapter is structured as follows. In Section 4.1, we present a brief

description of the CT–EXT algorithm. Section 4.2 introduces the proposed hardware

platform. The evaluation of the proposed platform and a discussion of the experimental

results are presented in Section 4.3. Finally, Section 4.4 shows our concluding remarks

and the directions for the rest of this PhD research.

4.1 CT–EXT algorithm

We first present some definitions and propositions supporting the CT–EXT algorithm.

Let [c|Y ] denote an ordered list of attributes such that c is the first attribute in

the list and Y is the ordered list of the remaining attributes. If we have, for instance

[c1, c3, c6], we can express it as [c1|[c3, c6]] according to this notation. In the same way,

[c3, c4] can be expressed as [c3|[c4]]. The empty list is denoted as [ ].

Let us also define an order relation ≺ over the set of ordered lists of attributes as

follows.

25
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1. Let Y = [ci|Y ′] and Z = [cj|Z ′] be two ordered lists of attributes. Then, Y ≺ Z

if i < j.

2. Let Y = [ci|Y ′] and Z = [ci|Z ′] be two ordered lists of attributes. Then, Y ≺ Z

if Y ′ ≺ Z ′.

3. ∀Y : [ ] ≺ Y .

Hereinafter, we will refer to this order as the lexicographical order. We denote the

length of a list L as |L|. Furthermore, we will use + to denote list concatenation such

that:

[c1, c3, c4] + [c6, c7] = [c1, c3, c4, c6, c7]

The following definition of super–reduct is equivalent to Condition 1 from Defini-

tion 2.1 [22]. In this section, we will use this definition for making clearer the ex-

planation of CT–EXT.

Definition 4.1 Let BM be a basic matrix and L be an ordered list of condition at-

tributes. L is associated to a super–reduct iff in the sub–matrix of BM considering only

the attributes in L, there is no zero row (a row with only zeros).

Now we define the concept of contribution which is a fundamental component in

most algorithms for reduct and typical testor computation [36, 51, 23, 32].

Definition 4.2 Let BM be a basic matrix, L be an ordered list of attributes and ci ∈ C

be an attribute, such that ci /∈ L. ci contributes to L iff the number of zero rows, in the

sub-matrix of BM considering the attributes in L + [ci], is lower than considering only

the attributes in L.

From this concept, the following proposition was stated and proved in [36].
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Proposition 4.1 Let L be an ordered list of attributes and ci ∈ C be an attribute such

that ci /∈ L. If ci does not contribute to L, then L+ [ci] cannot be associated to a subset

of any reduct.

Using Proposition 4.1, the evaluation of supersets of a candidate associated to L+[ci]

can be avoided if ci does not contribute to L.

In order to reduce the search space, CT–EXT arranges the basic matrix as follows:

first, one of the rows of the basic matrix with the fewest number of 1’s is selected. Then,

the selected row is moved to the top, and all columns in which it has 1, are moved to

the left. Table 4.1 shows the basic matrix from Table 2.4, after performing the above

explained arrangement.

Table 4.1: Arranged Basic Matrix computed from Table 2.4.
c3 c0 c1 c2 c4 c5 c6

c′0 c′1 c′2 c′3 c′4 c′5 c′6
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 1 0 0
0 0 0 0 1 1 1

Using the above described arrangement, Proposition 4.2 states that if we follow the

lexicographical order for traversing the search space and we reach an ordered list of

attributes L satisfying ci0 = 0, the search can be stopped [23].

Proposition 4.2 Let BM be an arranged basic matrix and L = [ci0 , ..., cis ] be an ordered

list of attributes. If the first row in the column corresponding to ci0 has 0, denoted as

ci0 [0] = 0, L is not associated to a super–reduct. Furthermore, there is no list L′, such

that L ≺ L′, associated to a super–reduct.

Algorithm 4.1 shows the pseudocode of CT–EXT, a detailed explanation of this

algorithm can be seen in [36]. The function Evaluate(BM,B) returns three values:
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super reduct, reduct and zero rows. super reduct is TRUE if the set B is a super–

reduct of BM and FALSE otherwise. reduct is TRUE if the set B is a reduct and FALSE

otherwise. zero rows is the amount of zero rows of B. The function LastOne(B) returns

the position of the rightmost element in the set B.

4.2 Proposed platform

A common stage in all algorithms for computing reducts is the verification of each can-

didate combination over the basic matrix. This is an intrinsic parallel operation that a

hardware implementation could take advantage of. The time complexity of evaluating

a candidate for the super–reduct condition is O(nm) and for the minimality condition

is O(n2m); where n is the number of attributes and m is the number of rows in the

basic matrix. In the proposed hardware component, these conditions are simultane-

ously evaluated in a single clock cycle. Moreover, the main novelty of the proposed

platform relays on the Candidate Generator module. This new module implements

the lexicographical order [36] as in the CT–EXT algorithm. This traversing order al-

lows our proposal to evaluate less candidates than those evaluated by other hardware

architectures reported in the literature; reducing, in this way, the runtime.

The proposed platform is shown in Figure 4.1. The platform comprises a host

PC and an Atlys board populated with a FPGA Spartan-6 device [11]; which are

connected through a USB cable. A custom developed software application, running in

the PC, handles all the processes needed to create the bitstream file to configure the

FPGA device. The custom architecture implemented in the FPGA carries out all the

calculations needed to generate the reducts and sends the results to the PC where the

user can then analize the results. A detailed description of all platform components are

given below.
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Algorithm 4.1 CT-EXT algorithm
1: Input: BM - sorted basic matrix with m rows and n columns.
2: Output: RS - set of reducts.
3: RS ⇐ {}
4: j ⇐ 0 . first attribute from BM to be analyzed
5: while BM [0, j] 6= 0 do
6: B ⇐ {cj} . current attribute subset
7: super reduct, reduct, zero rows⇐ Evaluate(BM,B)
8: if super reduct = TRUE then
9: if reduct = TRUE then . B is a reduct

10: RS ⇐ RS ∪B
11: else
12: i⇐ j + 1
13: while i < n do
14: B ⇐ B ∪ {ci}
15: zero rows last⇐ zero rows
16: super reduct, reduct, zero rows⇐ Evaluate(BM,B)
17: if zero rows = zero rows last then
18: B ⇐ B \ {ci} . attribute ci does not contribute
19: else
20: if super reduct = TRUE then
21: if reduct = TRUE then
22: RS ⇐ RS ∪B
23: B ⇐ B \ {ci}
24: zero rows⇐ zero rows last
25: if i = n− 1 then
26: k ⇐ LastOne(B)
27: if k = i then
28: B ⇐ B \ {ck}
29: k ⇐ LastOne(B)

30: if k 6= j then
31: B ⇐ B \ {ck}
32: super reduct, reduct, zero rows⇐ Evaluate(BM,B)
33: i⇐ k + 1
34: else
35: i⇐ i + 1

36: else
37: i⇐ i + 1

38: j ⇐ j + 1
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Figure 4.1: Proposed hardware software platform.

4.2.1 Hardware architecture

In the proposed hardware architecture, an attribute subset is handled as an n-tuple,

using a positional representation for all the n attributes of a basic matrix BM . Given

a subset B, its n-tuple representation has a 1 in the corresponding position i for each

ci ∈ B and 0 otherwise. The process of deciding whether an n-tuple is a super–reduct of

BM involves comparing the candidate against each one of the BM ’s rows. For software–

only implementations, this is a big disadvantage, specially for large matrices with many

rows. The proposed hardware architecture exploits the inherent parallelism in the CT–

EXT algorithm and evaluates whether a candidate is a reduct, or not, in a single clock

cycle. The hardware implementation of CT–EXT is composed of two modules, the BM

module and the Candidate Generator module, as shown in Figure 4.2.

Figure 4.2: CT–EXT Architecture.
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The BM module stores the basic matrix and includes all the logic needed to decide

whether an n-tuple is a super–reduct. The candidate generator module produces the

candidates (n-tuples) to be evaluated by the BM module. In order to calculate the

next candidate according to the CT–EXT algorithm, the architecture feedbacks the

evaluation result of the previous candidate to the generator module; this drastically

reduces the number of candidates tested and consequently the number of iterations

needed by the algorithm.

Figure 4.3: BM module.

The BM module is composed of m sub-modules named row i, as shown in Figure 4.3.

Each row i module contains a row (n bits) of the BM matrix and the logic needed to

perform a super–reduct evaluation. To decide whether an n-tuple is a super–reduct,

a bitwise AND operation is performed between the value stored in each row i module

and the current candidate, as shown in Figure 4.4. If at least one bit of the AND

operation is TRUE, then the output super–reduct of that particular row i sub-module

will be TRUE. The same operation is performed over the previous candidate. If the

output super–reduct is different from the output contributes for any row i sub-module,

it means that the current candidate reduces the amount of zero rows regarding the
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previous candidate and then, the output contributes from the BM module becomes

TRUE. If the output super–reduct of all row i sub-modules is TRUE, then the output

super–reduct of the BM module will be TRUE, which means that the candidate is a

super–reduct of BM .

Figure 4.4: BM row.

In order to verify the minimality condition, an N to N Decoder receives as input the

result of the AND operation between the current candidate and the corresponding BM

row. The output from the N to N Decoder repeats the input when there is only one bit

set to 1, and returns zero otherwise. For those rows with only one bit having a 1 after

ANDed with the candidate, the attribute in the position of that bit is indispensable

if the candidate is a super–reduct. According to definition of reduct, every attribute

must be indispensable.

Taking as example the ordered basic matrix of Table 2.4. In Table 4.2 the irre-

ducibility of {c′0, c′4, c′6} is evaluated while the same is done for {c′0, c′4, c′5} in Table 4.3.

Left rows show the result of the AND operation between each row of BM and the

candidate, while those rows in the right show the decoder output taking as input its

corresponding left row. In the last row, the result of an OR operation over all above
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Table 4.2: Reduct.
Cand. {c′0, c′4, c′6} Decoder output

c′0 c′1 c′2 c′3 c′4 c′5 c′6 c′0 c′1 c′2 c′3 c′4 c′5 c′6
1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0

Candidate = 1 0 0 0 1 0 1

Table 4.3: No reduct.
Cand. {c′0, c′4, c′5} Decoder output

c′0 c′1 c′2 c′3 c′4 c′5 c′6 c′0 c′1 c′2 c′3 c′4 c′5 c′6
1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0

Candidate 6= 1 0 0 0 1 0 0

bits is shown. According to our previous explanation, the candidate {c′0, c′4, c′6} is a

reduct given that the result of the OR operation is equal to the candidate itself; while

candidate {c′0, c′4, c′5} is not.

The candidate generator module (Figure 4.5) uses the feedback from the BM module

to calculate the next candidate to be evaluated. The candidate generator module

consists of three registers for holding the current candidate (Curr cand), the previous

candidate (Prev cand) and the last added attribute (J). The values of these registers

are updated by the modules EA1, EA2 and A.

Depending on the combination of the input values, the outputs E1A, E2A or A

are used for updating the registers. Table 4.4 shows how the registers are updated

according to the values of super–reduct, contributes and J inputs. This operation is

computed by the module sel shown in Figure 4.5.
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Figure 4.5: Candidate Generator module.

Table 4.4: Candidate Generator Selector.
Priority Condition Registers update

1
J = Jmax

(Jmax = max
value of J)

Curr cand ← E2A
Prev cand ← E2A

J ← E2A

2
contributes = 0
or super–reduct

= 1

Curr cand ← E1A
Prev cand ← E1A

J ← E1A

3
contributes = 1
or super–reduct

= 0

Curr cand ← A
Prev cand ← Curr cand

J ← A

The submodule A, shown in Figure 4.6, assigns 1 to the next attribute at the right

of the last bit with value 1 in the input candidate. The outputs of the submodule A

are the new candidate and J + 1.

The submodule E1A, shown in Figure 4.7, comprises the Rem 1 (Figure 4.8) and

A submodules. The submodule Rem 1 deletes the last attribute added to the input

candidate. This action is performed by a priority encoder which locates the last bit with

value 1 in the input candidate. Rem 1 outputs represent the previous candidate and

the index of the deleted attribute. These outputs are connected to the corresponding

inputs of the submodule A, in order to add an attribute in the corresponding position.
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Finally, the outputs of E1A represent the new candidate to be evaluated, the previous

candidate and the index where the new attribute was added to the current candidate.

Figure 4.6: Submodule A.
Figure 4.7: Submodule E1A.

Finally, the submodule E2A removes the last two attributes from the input candi-

date, and then adds the following corresponding attribute. This operation is performed

by means of two Rem 1 submodules and an A submodule, as shown in Figure 4.9.

In order to check if the execution of the CT–EXT algorithm has finished, the result

of an AND operation between the current candidate and the first row of the basic

matrix is compared to the null n-tuple (0, ..., 0), as shown in the upper right corner of

Figure 4.5. If the result of this comparison is TRUE, then the output done is activated

because all further candidates will not satisfy the super–reduct condition over the first

row of BM .

Figure 4.8: Submodule Rem 1. Figure 4.9: Submodule E2A.
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The FPGA-based board

The Atlys board from Digilent [11] was selected as the prototyping board. This board

is a development and prototyping platform based on a Xilinx Spartan-6 LX45 FPGA,

speed grade -3. The Atlys board supports device programming and simplified user-data

transfer at a maximum rate of 48MB/s, over a single USB connection.

The communication between the host PC and the FPGA uses the Digilent Syn-

chronous Parallel Interface (DSTM) protocol [10]. Reduct n-tuples, computed by the

proposed architecture, are buffered within a FIFO in order to be split into bytes. These

bytes are then buffered into a double clocked FIFO [54] to be read from the PC. This

last FIFO ensures the output interface operation at 48MHz, as required by the DSTM

protocol.

4.2.2 Software Description

The software component allows the user to provide the basic matrix in a plain text

file. The software component is responsible for programming the FPGA device and

communicating with the board during the reduct computation.

First, the basic matrix is reorganized by setting one of the rows with the minimum

amount of ones as the first row and swapping columns in such a way those with a 1 in

the first row appear on the left.

Using the arranged basic matrix, a VHDL file is generated and the synthesis and op-

timization process is started. In this way, the optimization stage takes advantage of the

basic matrix data to minimize the FPGA resource utilization. Then, the programming

file for the FPGA device is generated.

On the running stage, the software component interacts with the hardware architec-

ture. First, the device is programmed with the bit-file obtained from the previous stage.
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Then, the hardware architecture starts computing reducts. The software component

keeps pulling through a USB port for new reducts in the output FIFO until the done

signal is activated in the FPGA.

As a result of the arrangement process, the order of the attributes in the basic

matrix is altered as it can be seen in Table 4.1. Consequently, the reducts calculated

in the FPGA must be codified according to the order of the columns in the original

basic matrix. This task is performed by the software component and then the results

are written to the output file.

4.3 Evaluation and Discussion

In order to show the performance of the proposed platform, it was compared against a

software implementation of the CT–EXT algorithm [36] and the BT hardware platform

previously reported in [30]; which is the most recent hardware implementation for

computing reducts reported in the literature.

Either CT–EXT or BT hardware implementations are capable of evaluating a can-

didate per clock cycle. If both architectures are running at the same frequency, as it

will be the case in our experiments, there are two reasons for differences in running

time. The first one is the time taken for reorganizing the basic matrix, which is a more

complex process in BT, although it can be neglected as it was shown in [34]. The second

and the most relevant, is the amount of candidates to be evaluated.

Regarding to the software implementation, the CT–EXT hardware platform has two

disadvantages. First, VHDL code is generated for each BM data and a process of syn-

thesis must be accomplished before the algorithm execution; while this is unnecessary

in the software version of CT–EXT. Secondly, the software will be running in a PC at

a frequency of 3.10GHz while the FPGA architecture will run at 50MHz.
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These disadvantages make the hardware approach useful (faster) under two con-

ditions. First, the number of candidates to be evaluated is big enough to overcome

the synthesis overhead. Second, the dimensions of the BM are big enough to provide

a considerable speedup of the candidate evaluation process. Although the hardware

architecture could be designed for a fixed maximum matrix size and receive the BM

through the USB port, by doing this, the size of the problem that can be solved would

be significantly reduced. The synthesis process comprehend an optimization of the de-

sign, taking advantage of the BM data distribution for the reduction of the generated

hardware configuration. The number of operations for the evaluation of a single candi-

date, in the software approach, is proportional to the number of rows and it is directly

related to the number of columns in the BM . Using this approach, it is possible to

achieve a significant reduction of the processing time, even if operating at a much lower

clock frequency, by evaluating a candidate on each clock cycle.

With these points in mind and in order to show the usability of the proposed plat-

form, three kinds of basic matrices were randomly generated. Each type containing

different percentage of 1’s:

1. Very-low density matrices: approximately 8%.

2. Low density matrices: approximately 33%.

3. Medium density matrices: approximately 45%.

Higher density matrices were discarded because they do not constitute a computa-

tionally expensive problem, as stated in [34]. Hereinafter, we will be referring to these

three sets of matrices by its approximate density of 1’s.

For our experiments, 30 basic matrices of different sizes were randomly generated.

A random number generator was used to generate rows, which are filtered for the

minimum and maximum number of 1’s allowed. In this way the desired density was
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Figure 4.10: Runtime for matrices with a density of 8%.

controlled. If accepted, the row is verified as basic against the saved rows. Basic rows

are saved until the desired number of rows is reached.

For the hardware platforms, we measure the runtimes including the time for the

following stages: BM input parsing and VHDL code generation, synthesis process, and

reduct computation (with the hardware component running at 50MHz). The number

of rows for each type of matrices is conditioned by the dimensions of the biggest matrix

that may be synthesized at the desired running frequency. All experiments are per-

formed using an Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz for software executions

and an Atlys board, powered by a Spartan-6 LX45 FPGA device, for the hardware

components. Figures 4.10, 4.11 and 4.12 show graphics of the runtime (in hours) for

the three types of basic matrices.

The proposed CT–EXT hardware platform (CTH) results were taken as reference

for axis limits in Figures 4.10, 4.11 and 4.12. Slowest executions of the CT–EXT

software implementation (CTS) are not shown in order to keep clarity in the figures.

The hardware platform for BT (BTH) was not able to met the constrain of 50MHz
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Figure 4.11: Runtime for matrices with a density of 33%.

clock frequency for some matrices and running it at lower frequency resulted in longer

runtimes; which fall out of the limits of the figures. We were able to run the three

platforms for 4 matrices of different types.

In [34], it was stated that the time for computing reducts does not only depend

on the size and density of the BM . This assertion is illustrated by the matrices with

68 and 70 attributes respectively, in Figure 4.12. Although these two matrices have a

similar density, the larger matrix requires a shorter runtime.

Table 4.5 shows the runtime for each stage of the data flow, for 400x40, 400x42 and

400x44 very-low density matrices. This table shows that the synthesis time becomes less

significant regarding the total time when the problem size increases. From this table,

it can also be seen that the main difference between the BT and CT–EXT hardware

implementations is the runtime of the reduct computation process. The main reason

for this difference is the number of candidates evaluated by each algorithm. This is an

explanation about why the BT hardware implementation is slower than the software

version of CT–EXT for the largest matrix in Table 4.5.
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Figure 4.12: Runtime for matrices with a density of 45%.

Tables 4.6 and 4.7 summarize the FPGA resource utilization on our prototyping

board. The maximum operation frequency from Tables 4.6 and 4.7 shows that usually

the CT–EXT implementation is potentially faster than the modified BT implementa-

tion. Resource utilization is directly related to BM dimensions, its density and to a

lesser extent to data organization.

As it was shown in these experiments, the proposed hardware platform provides

Table 4.5: Runtime in seconds (broken down for each stage) for 400x40, 400x42 and
400x44 very-low density matrices.

Dimensions 400x40 400x42 400x44
Stage CTH BTH CTH BTH CTH BTH
Load and file generation 0.05 0.07 0.05 0.06 0.06 0.06
Synthesis process 253 656 401 564 452 612
Algorithm execution 300 1071 970 3826 2031 13311
Total time 554 1727 1372 4390 2484 13924
CTS total time 3238 7320 12420
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Table 4.6: Synthesis summary of resource utilization for a BM with a density of 8%
on a Spartan-6 LX45 FPGA device.

Dimensions 400x40 400x44
Algorithm BT CT–EXT BT CT–EXT
Slices 1,398 (20%) 983 (14%) 1,554 (22%) 1,209 (17%)
6-input LUTs 4,010 (14%) 2,806 (10%) 4,475 (16%) 3,004 (11%)
Flip-Flops 832 (1%) 852 (1%) 876 (1%) 938 (1%)
Max clock freq 80.44MHz 179.58MHz 84.56MHz 173.24MHz

Table 4.7: Synthesis summary of resource utilization for a BM with a density of 33%
on a Spartan-6 LX45 FPGA device.

Dimensions 225x50 225x55
Algorithm BT CT–EXT BT CT–EXT
Slices 1,381 (20%) 1,554 (22%) 1,455 (21%) 1,562 (22%)
6-input LUTs 3,769 (13%) 4,315 (15%) 4,135 (15%) 5,026 (18%)
Flip-Flops 949 (1%) 980 (1%) 1,002 (1%) 1,039 (1%)
Max clock freq 87.46MHz 155.40MHz 85.27MHz 156.35MHz

higher processing performance than the software implementation of the CT–EXT algo-

rithm for the used matrices. This behavior is possible because the hardware component

of the proposed platform is capable of testing whether a candidate is a super–reduct

of a BM in a single clock cycle, independently of the number of columns and rows,

whereas the software implementation runtime will significantly increase for matrices

with a large number of rows.

Experimental results show that the proposed platform beats the software imple-

mentation of the CT–EXT algorithm, with ratios of around one order of magnitude.

However, for large enough datasets this improvement could be significantly higher, as

it can be inferred from Figure 4.12.
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4.4 Concluding Remarks

In this chapter, we presented the design and implementation of a new hardware software

platform for computing all reducts in a dataset. Unlike most of the existing hardware

architectures for feature selection, our proposal computes all the minimal subsets of

attributes that preserve the discernibility capacity of the original feature set. The good

performance of our hardware implementation, compared to the software approach, is

feasible due to the high level of parallelism implicit in the candidate evaluation process

of the CT–EXT algorithm; which can be efficiently implemented on an FPGA. This

proposed architecture offers an alternative to a previous hardware implementation;

being faster in most of the cases, by evaluating less candidates.

Our experiments also showed that the proposed platform uses fewer hardware re-

sources and it is able to run at higher clock frequency than the hardware implementation

of BT. This characteristic allows processing larger matrices, since the maximum size of

the problem that can be solved in a hardware architecture is conditioned by its resource

requirements.

Even though our platform can process larger basic matrices than the BT implemen-

tation, its resource utilization determines the maximum size of the basic matrix that can

be solved (this is, indeed, the main limitation of this proposal). In this way, hardware

platforms for reduct computation are faster for basic matrices big enough to overcome

the delay of the synthesis process and to take advantage of the single clock candidate

evaluation; but the size of these basic matrices is limited by the FPGA resources. This

issue of hardware platforms drastically reduces their practical application.

With this precedent, we directed our PhD research to the development of new

algorithms for reducing the runtime of reduct computation. The algorithms proposed

through this research can be further implemented in a hardware fashion; but due to
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the current limits in FPGA resources, these implementations are beyond our goals.



Chapter 5
A New Algorithm for Computing
All Reducts

As it was shown in Chapter 3, several algorithms have been reported to reduce the

cost of reduct computation. Unfortunately, most of these algorithms relay on high

cost operations for candidate evaluation. Therefore, in this chapter, we propose a

new algorithm, GCreduct, for computing all reducts of a decision system, based on

the pruning properties of Gap elimination and attribute Contribution. Our proposed

algorithm uses simpler operations for candidate evaluation, which allows reducing the

runtime required for computing all reducts. In addition, an experimental study for

finding a relation between some properties of the basic matrix and the fastest algorithms

for reduct computation, is presented.

The contents in this chapter are structured as follows. In Section 5.1, we introduce

the GCreduct algorithm for computing all reducts of a decision system. An evaluation

of the proposed algorithm and a discussion of the experimental results are presented in

Section 5.2. Finally, Section 5.3 shows our concluding remarks.

5.1 GCreduct

In this section, we introduce the GCreduct algorithm for computing all reducts of

a decision system. In Subsection 5.1.1, we present the pruning properties used in

GCreduct. Then, in Subsection 5.1.2, we introduce the GCreduct algorithm; illustrating

its execution over the decision system of Table 2.1.

45
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5.1.1 Pruning Properties for GCreduct

The concept of gap was first introduced for LEX [39], to avoid the evaluation of candi-

dates that are subsets of reducts or non super–reducts.

Definition 5.1 Let L = [ci0 , ..., cis ] be an ordered list of attributes. If there exists an

attribute cip ∈ L such that ip = max{iq|iq+1 6= iq + 1}; 0 ≤ q < s, cip is the gap of L.

In other words, the gap of L is the attribute with the highest index satisfying that

its consecutive attribute in L is not its consecutive attribute (column) in the basic

matrix. Notice, from the notation used above, that iq and iq+1 are consecutive indexes

in L while iq and iq + 1 are consecutive indexes in the basic matrix.

Let us take, for example, a basic matrix with 7 attributes (c0 − c6), then:

L1 = [c0, c1, c2, c3] there is no gap

L2 = [c0, c1, c2, c5, c6] the gap is c2

L3 = [c0, c1, c2, c4, c6] the gap is c4

In the first example, there is no gap since all the attributes in L1 are consecutive in the

basic matrix. In the second example, the consecutive attribute of c2 in L2 is c5, which

is not its consecutive attribute in the basic matrix. Thus, for L2, the gap is c2. This

is also the case for c2 in L3, however, since c4 has a higher index and its consecutive

attribute in L3 is not c5, c4 is the gap for L3.

The pruning property of gap elimination is supported by the proposition 5.1. The

proof of this proposition can be seen in [32].

Proposition 5.1 Let BM be a basic matrix and L = [ci0 , ..., cis ] be an ordered list

associated to a reduct, such that cis is the last attribute in BM. If there is a gap cip in

L, there is no list Y associated to a reduct, such that L ≺ Y ≺ L′ and L 6= Y 6= L′,

where L′ = [ci0 , . . . , cip−1 , cip+1].
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From Proposition 5.1 we have the following corollary; which is relevant for the

proposed algorithm in order to avoid unnecessary evaluations.

Corollary 5.1 Let BM be a basic matrix and L = [ci0 , ..., cis ] be an ordered list asso-

ciated to a non super–reduct, such that cis is the last attribute in BM. If there is a gap

cip in L, there is no list Y associated to a reduct, such that L ≺ Y ≺ L′ and Y 6= L′,

where L′ = [ci0 , ..., cip−1 , cip+1].

Using Proposition 5.1 and Corollary 5.1, all candidates between L and L′, in the

lexicographical order, can be discarded.

For a fast evaluation of candidates, in GCreduct, the columns of a basic matrix BM

are coded as binary words with as many bits as rows in BM. The cumulative mask for an

attribute ci, denoted as cmci , is defined as the binary word representing the i-th column

in BM. The cumulative mask for an ordered list of attributes B = [ci1 , ci2 , ..., cik ] is

defined as cmB = cmci1
∨ cmci2

∨ ...∨ cmcik
where ∨ represents the binary OR operator.

It is not hard to see that the number of 0’s in cmB is the same as the number of

zero rows in the sub-matrix of the basic matrix, considering only the attributes in B.

According to Definition 4.2, ci contributes to B iff cmB+[ci] has more 1’s than cmB.

The value of cmB+[ci] can be computed incrementally, as in fast–CT–EXT [38] and

fast–BR [24], due to the associative property of the OR operation (we can compute

cmB+[ci] = cmB ∨ cmci). Notice from this last formulation, that ci contributes to B iff

cmB+[ci] 6= cmB, since cmB+[ci] cannot have less 1’s than cmB. It is easy to see, from

Definition 4.1, that B ⊆ C is a super–reduct iff cmB = (1, ..., 1) (cmB has a 1 in every

bit).

In order to determine whether a super–reduct is a reduct (verifying the minimality

condition) the exclusion mask, introduced in [23], plays a fundamental role.
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Definition 5.2 Let BM be a basic matrix and B be an ordered list of attributes. We

call exclusion mask of B, denoted as emB, to the binary word in which the i−th bit is

1 if the i−th row in BM has a 1 in only one column of those columns corresponding to

attributes in B, and it is 0 otherwise.

For instance, from the basic matrix of Table 2.4 we have:

em[c0,c1,c2] = (0, 1, 1, 0, 1, 1)

em[c0,c1,c2,c3] = (0, 1, 0, 1, 1, 0)

em[c0,c1,c2,c3,c4] = (1, 0, 0, 1, 1, 0)

Fast–BR [24], introduced the following two propositions to support the cumulative

computation of the exclusion mask.

Proposition 5.2 Let B be an ordered list of attributes and ci ∈ C be an attribute, such

that ci /∈ B. The exclusion mask of B + [ci] is computed as follows:

emB+[ci] = (emB ∧ ¬cmci) ∨ (¬cmB ∧ cmci)

where cm refers to the cumulative mask.

Proposition 5.3 Let B be an ordered list of attributes and ci ∈ C be an attribute, such

that ci /∈ B. If ∃cx ∈ B such that emB+[ci] ∧ cmcx = (0, ..., 0). Then, B + [ci] cannot be

a subset of any reduct, and we say that ci is exclusionary with B.

We call exclusion evaluation to the application of Proposition 5.3. This proposition

allows us to discard the supersets of B + [ci] if ci is exclusionary with B.
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5.1.2 The GCreduct algorithm

GCreduct finds all reducts in the basic matrix of a decision system. This algorithm ex-

plores the search space evaluating some candidates and discarding others based on pre-

vious evaluations. Unlike other works [51, 24] where candidate evaluation is performed

through operations with high cost, GCreduct uses a simpler candidate evaluation based

on gap elimination and attribute contribution to reduce the runtime.

The GCreduct algorithm traverses the search space following the lexicographical

order. Once a new attribute is added, it is removed if it does not reduce the number

of zero rows regarding the previous candidate (i.e. the attribute does not contribute).

If the new attribute contributes, the candidate is evaluated for the super–reduct and

reduct conditions. If the candidate is a reduct, it is saved in the result set. If the

current candidate is a super–reduct, the new attribute is removed, since it does not

make sense to evaluate supersets of a super–reduct. This process continues until the

last attribute from the basic matrix has been included in the candidate. At this point,

the algorithm searches for a gap in the candidate to avoid unneeded evaluations. The

algorithm continues until the first attribute in the candidate has a zero in the first row

of the basic matrix. Once this condition is reached, the algorithm finishes because there

are no remaining reducts (Proposition 4.2).

The pseudocode for GCreduct is shown in Algorithm 5.1. The algorithm operates

over the arranged basic matrix, and as a preprocessing stage, superfluous attributes [21]

are removed from the basic matrix. After initializing the current candidate with the

first attribute, the cumulative mask is updated. Then, the attribute contribution is

evaluated using Definition 4.2. For those candidate subsets with a contributing at-

tribute, the super–reduct condition is evaluated using Definition 4.1. For each detected

super–reduct, Proposition 5.3 is evaluated in order to determine whether a super–reduct

is a reduct, to be saved in the result (RR). At this point, the candidate evaluation is



Chapter 5. GCreduct 50

finished and the candidateGenerator procedure is called to evaluate a new candidate

subset.

Algorithm 5.1 GCreduct algorithm for computing all reducts
Input: BM . The arranged basic matrix
Output: RR . The set of all reducts
1: RR⇐ ∅
2: B ⇐ ∅ . Subset of attributes in the candidate
3: c⇐ 0 . New attribute to add in the candidate
4: while not done do
5: reduct⇐ False, superReduct⇐ False, contributes⇐ False
6: cmB+[c] ⇐ updateCM(B + [c])
7: if cmB+[c] 6= cmB then
8: contributes⇐ True
9: if cmB+[c] = (1, ..., 1) then

10: superReduct⇐ True
11: reduct⇐exclusion(B + [c])
12: if reduct then
13: RR⇐ RR ∪ {B + [c]}
14: B + [c], done⇐candidateGenerator(B + [c], contributes, superReduct, reduct)

In Algorithm 5.2, the pseudocode for updating the cumulative mask of a candidate

B + [c] is shown. Cumulative masks are stored in the CM array, indexed by the last

attribute in B for further computations. The function getLast(B) returns the last

attribute in B. The time complexity of this procedure is Θ(m), where m is the number

of rows in the basic matrix, because of the bit wise operation of line 5.

Algorithm 5.2 updateCM procedure
Input: B + [c] . Current candidate
Output: cmB+[c] . Updated cumulative mask
1: if B = ∅ then
2: cmB ⇐ (0, ..., 0)
3: else
4: cmB ⇐ CM [getLast(B)]

5: cmB+[c] ⇐ cmB ∨ cmc

6: CM [c]⇐ cmB+[c]

The pseudocode for the gap elimination is shown in Algorithm 5.3. Every consec-

utive attribute in the current candidate, starting from the last attribute is eliminated

as it was explained in Definition 5.1. The time complexity of this procedure is Θ(n),
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Algorithm 5.3 eliminateGAP procedure
Input: B . Ordered list of attributes
Output: B . Ordered list of attributes after the gap elimination
1: last⇐ LastAttribute
2: while getLast(B) = (last− 1) do
3: last⇐ getLast(B)
4: B ⇐ B \ last
5: if |B| = 1 then
6: break

where n is the number of columns in the basic matrix; this complexity is determined

by the number of iterations in the while loop. Since all other instructions within the

candidateGenerator procedure are Θ(1), we can conclude that the overall time com-

plexity of candidateGenerator is Θ(n). In the same way, it can be seen that the overall

time complexity of a candidate evaluation in GCreduct, is Θ(nm). However, since com-

puting all reducts is an NP–hard problem, the number of candidate evaluations has an

exponential relation to n.

The pseudocode for the exclusion evaluation is shown in Algorithm 5.4. First, the

exclusion mask is cumulatively computed using Proposition 5.2. Then, every attribute

in B is evaluated for exclusion applying Proposition 5.3. The time complexity of this

procedure is Θ(nm) because there are Θ(n) loops iterations over the bitwise operations

with complexity Θ(m).

Algorithm 5.4 exclusion procedure
Input: B + [c] . Current candidate
Output: reduct . Boolean variable indicating whether the current candidate is a reduct
1: em⇐ (0, ..., 0), cm⇐ (0, ..., 0)
2: for all x ∈ B + [c] do . Computing exclusion mask (Proposition 5.2)
3: em⇐ (em ∧ ¬cmx) ∨ (¬cm ∧ cmx)
4: cm⇐ cm ∨ cmx

5: reduct⇐ True
6: for all x ∈ B do . Exclusion evaluation (Proposition 5.3)
7: if em ∧ cmx = (0, ..., 0) then
8: reduct⇐ False
9: break

In Algorithm 5.5, the pseudocode of the procedure for generating the next candidate
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(B + [c]) is shown. The function Next returns the following attribute in the arranged

basic matrix. LastAttribute holds the position of the last attribute in the basic ma-

trix. If the last attribute of the basic matrix has already been included in the current

candidate, the following actions are taken. If the current candidate is a reduct (Propo-

sition 5.1) or it is not a super–reduct (Corollary 5.1), the gap is eliminated. Otherwise,

the lexicographical order is followed.

If the last attribute is not reached yet, there are two possibilities:

1. The current candidate is a super–reduct or the current attribute c does not con-

tribute to B; then c is replaced by the next attribute in the arranged basic matrix.

In this way, all the supersets of B + [c] are pruned, taking advantage of the con-

dition 2 of Definition 2.1 (if the current candidate is a super–reduct); or applying

Proposition 4.1 (if c does not contribute to B).

2. The attribute c contributes to B and the current candidate is not a super–reduct;

then the current attribute is added to B and the next attribute in the basic matrix

is loaded to c; following the lexicographical order.

Each time a new candidate with a single attribute (B + [c] = [c]) is generated, the

column of the basic matrix corresponding to c is verified to detect a zero in its first

row. If it is the case, the algorithm finishes. This final pruning is possible because of

Proposition 4.2.

In GCreduct, we compute the exclusion mask and evaluate the attribute exclusion,

using Proposition 5.3, for those candidates detected as super–reducts in order to verify

whether they are reducts. super–reducts are, most of the times, a small fraction of

the evaluated candidates. On the other hand, in algorithms such as fast–BR [24] and

RGonCRS [51], for each candidate with a contributing attribute, the exclusion evalua-

tion is performed. In this way, fast–BR and RGonCRS avoid the evaluation of all the
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Algorithm 5.5 candidateGenerator procedure
Input: B + [c] . Current candidate

contributes . Boolean variable indicating whether the new attribute contributes
superReduct . Boolean variable indicating whether the current candidate is a super–reduct
reduct . Boolean variable indicating whether the current candidate is a reduct

Output: B + [c] . Next candidate
done . Boolean variable indicating whether the condition to finish have been reached

1: done⇐ False
2: if c = LastAttribute then . Last column of the basic matrix is reached
3: if reduct or not superReduct then . Eliminate the gap
4: eliminateGAP(B)

5: c⇐ Next(getLast(B))
6: B ⇐ B \ getLast(B)
7: else
8: if not contributes or superReduct then
9: c⇐ Next(c) . Eliminate c and add the next attribute

10: else
11: B ⇐ B + [c] . Include c
12: c⇐ Next(c) . Add the next attribute

13: if B = ∅ and cmc[0] = 0 then . The current attribute c has a 0 in the first row
14: done⇐ True

supersets of a candidate which has an exclusionary attribute. However, the exclusion

evaluation is the procedure with the highest complexity into these algorithms (Θ(nm)),

and it is evaluated for most candidates by fast–BR and RGonCRS.

In Table 5.1, we show an example of the execution of GCreduct over the basic matrix

of Table 4.1. The first column numerates the candidate evaluations. The second column

shows the position of the current candidate, according to the lexicographical order; while

the third column shows the evaluated candidates. Notice that, for this example, there

are 127 attribute subsets in the search space from which, only 39 have to be analyzed.

In the last column, some comments about the evaluation of the current candidate and

the generation of the next one, are included.
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Table 5.1: Execution of GCreduct over the basic matrix shown in Table 4.1.

Iter Pos Candidate Comments

1 1 [c′0] c′0 contributes to [ ] but the candidate is not a super–reduct. Add a new attribute.

2 2 [c′0, c
′
1] c′1 does not contributes to [c′0]. Remove c′1.

3 34 [c′0, c
′
2] c′2 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

4 35 [c′0, c
′
2, c
′
3] c′3 contributes to [c′0, c

′
2] but the candidate is not a super–reduct. Add a new attribute.

5 36 [c′0, c
′
2, c
′
3, c
′
4] The candidate is a super–reduct but it is not a reduct. Remove c′4.

6 40 [c′0, c
′
2, c
′
3, c
′
5] The candidate is a reduct and it is saved. Remove c′5.

7 42 [c′0, c
′
2, c
′
3, c
′
6]

The candidate is a super–reduct but it is not a reduct. The lexicographical order is

followed.

8 43 [c′0, c
′
2, c
′
4] The candidate is a reduct and it is saved. Remove c′4.

9 47 [c′0, c
′
2, c
′
5] c′5 contributes to [c′0, c

′
2] but the candidate is not a super–reduct. Add a new attribute.

10 48 [c′0, c
′
2, c
′
5, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′2) is

eliminated.

11 50 [c′0, c
′
3] c′3 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

12 51 [c′0, c
′
3, c
′
4] c′4 contributes to [c′0, c

′
3] but the candidate is not a super–reduct. Add a new attribute.

13 52 [c′0, c
′
3, c
′
4, c
′
5] c′5 does not contributes to [c′0, c

′
3, c
′
4]. Remove c′5.

14 54 [c′0, c
′
3, c
′
4, c
′
6]

The candidate is a super–reduct but it is not a reduct. The lexicographical order is

followed.

15 55 [c′0, c
′
3, c
′
5] c′5 contributes to [c′0, c

′
3] but the candidate is not a super–reduct. Add a new attribute.

16 56 [c′0, c
′
3, c
′
5, c
′
6]

The candidate is a super–reduct but it is not a reduct. The lexicographical order is

followed.

17 57 [c′0, c
′
3, c
′
6]

The candidate is a reduct and it is saved. Since the last attribute is included, the gap

(c′3) is eliminated.
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Iter Pos Candidate Comments

18 58 [c′0, c
′
4] c′4 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

19 59 [c′0, c
′
4, c
′
5] c′5 does not contributes to [c′0, c

′
4]. Remove c′5.

20 61 [c′0, c
′
4, c
′
6]

The candidate is a reduct and it is saved. Since the last attribute is included, the gap

(c′4) is eliminated.

21 62 [c′0, c
′
5] c′5 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

22 63 [c′0, c
′
5, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′0) is

eliminated.

23 65 [c′1] c′1 contributes to [ ] but the candidate is not a super–reduct. Add a new attribute.

24 66 [c′1, c
′
2] c′2 contributes to [c′1] but the candidate is not a super–reduct. Add a new attribute.

25 67 [c′1, c
′
2, c
′
3] c′3 contributes to [c′1, c

′
2] but the candidate is not a super–reduct. Add a new attribute.

26 68 [c′1, c
′
2, c
′
3, c
′
4] c′4 contributes to [c′1, c

′
2, c
′
3] but the candidate is not a super–reduct. Add a new attribute.

27 69 [c′1, c
′
2, c
′
3, c
′
4, c
′
5] The candidate is a super–reduct but it is not a reduct. Remove c′5.

28 71 [c′1, c
′
2, c
′
3, c
′
4, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′4) is

eliminated.

29 72 [c′1, c
′
2, c
′
3, c
′
5] The candidate is a reduct and it is saved. Remove c′5.

30 74 [c′1, c
′
2, c
′
3, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′3) is

eliminated.

31 75 [c′1, c
′
2, c
′
4] c′4 contributes to [c′1, c

′
2] but the candidate is not a super–reduct. Add a new attribute.

32 76 [c′1, c
′
2, c
′
4, c
′
5] The candidate is a reduct and it is saved. Remove c′5.

33 78 [c′1, c
′
2, c
′
4, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′4) is

eliminated.

34 79 [c′1, c
′
2, c
′
5] c′5 contributes to [c′1, c

′
2] but the candidate is not a super–reduct. Add a new attribute.

35 80 [c′1, c
′
2, c
′
5, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′2) is

eliminated.

36 82 [c′1, c
′
3] c′3 contributes to [c′1] but the candidate is not a super–reduct. Add a new attribute.
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Iter Pos Candidate Comments

37 83 [c′1, c
′
3, c
′
4] c′4 contributes to [c′1, c

′
3] but the candidate is not a super–reduct. Add a new attribute.

38 84 [c′1, c
′
3, c
′
4, c
′
5] c′5 contributes to [c′1, c

′
3, c
′
4] but the candidate is not a super–reduct. Add a new attribute.

39 85 [c′1, c
′
3, c
′
4, c
′
5, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′1) is

eliminated.

40 97 [c′2]

The algorithm finishes because the column of the basic matrix corresponding to

the leftmost attribute in the candidate (c′2) has a zero in the first row. RR =

{[c′0, c′2, c′3, c′5], [c′0, c
′
2, c
′
4], [c′0, c

′
3, c
′
6], [c′0, c

′
4, c
′
6], [c′1, c

′
2, c
′
3, c
′
5], [c′1, c

′
2, c
′
4, c
′
5]}

In this example, the algorithm starts with the list B = [ ] and its cumulative mask

cmB = (000000). The first candidate is built by assigning to c the current attribute

c′0 (B + [c] = [c′0]) and we have cm[c′0] = (111000). According to Definition 4.2, this

attribute contributes, thus it is added to B = [c′0]. Following, the next attribute is

added by doing c = c′1. The new cumulative mask is cm[c′0,c
′
1] = (111000) = cm[c′0]

and c′1 does not contribute to B. At this point, all the supersets of [c′0, c
′
1] are pruned

according to Proposition 4.1. Thus, B = [c′0] and c = c′2, and the candidates from

the third to the 33rd, in the lexicographical order, are pruned as it can be seen in

Table 5.1. This time, we have cm[c′0,c
′
2] = (111100) 6= cm[c′0] so that c′2 contributes to

[c′0] and it is added to B = [c′0, c
′
2] while c = c′3. Again c′3 contributes to [c′0, c

′
2] and

cm[c′0,c
′
2,c
′
3] = (111110) 6= cm[c′0,c

′
2]. Now, the candidate is B = [c′0, c

′
2, c
′
3] and c = c′4

with cm[c′0,c
′
2,c
′
3,c
′
4] = (111111); which is a super–reduct. The next step is the exclusion

evaluation over this super–reduct to verify whether it is a reduct.

The exclusion verification starts with cmB = emB = (000000). The final value

em[c′0,c
′
2,c
′
3,c
′
4] = (101101) is computed as it is illustrated in Table 5.2, by using Proposi-

tion 5.2 (Algorithm 5.4). Since cmc′3
∧ (101101) = (000000), we have that [c′0, c

′
2, c
′
3, c
′
4]

is not a reduct. In order to prune supersets of this candidate, the last attribute (c′4)

is removed and we have B = [c′0, c
′
2, c
′
3] with c = c′5 for the next evaluation. Now,
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the candidate [c′0, c
′
2, c
′
3, c
′
5] is a reduct with em[c′0,c

′
2,c
′
3,c
′
5] = (100111). The rest of the

example in Table 5.1 follows this process. The algorithm finishes after the candidate

[c′1, c
′
3, c
′
4, c
′
5, c
′
6] while evaluating [c′2], which has a 0 in the first row of the basic matrix.

Table 5.2: Exclusion mask computation for [c′0, c
′
2, c
′
3, c
′
4].

B + [c] cmc cmB emB emB+[c]

[c′0] (111000) (000000) (000000) (111000)
[c′0, c

′
2] (010100) (111000) (111000) (101100)

[c′0, c
′
2, c
′
3] (000010) (010100) (101100) (101110)

[c′0, c
′
2, c
′
3, c
′
4] (000011) (000010) (101110) (101101)

During the search process, GCreduct evaluates some attribute subsets while discards

some others. Propositions 5.1, 4.1 and 4.2 as well as the minimality condition of reducts,

guarantee that none of the discarded attribute subsets is a reduct. This is summarized

in the following proposition.

Proposition 5.4 The algorithm GCreduct computes all reducts of a decision system.

Proof. The algorithm GCreduct traverses the search space of attribute subsets in the

lexicographical order. During the search process, some attribute subsets are evaluated

while other ones are discarded in the following cases:

� Supersets of an attribute subset which has a non contributing attribute (Proposi-

tion 4.1).

� Supersets of a super–reduct (which cannot be a reduct based on the condition 2 of

the subsection 2.2).

� Subsets of a reduct (Proposition 5.1), or a non super–reduct (Corollary 5.1), which

includes the last attribute of the basic matrix.

� The remaining candidates, when the column of the basic matrix corresponding to

the leftmost attribute in the candidate has a zero in the first row (Proposition 4.2).
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Since all attribute subsets discarded by the searching process are certainly not reducts,

we can state that GCreduct computes all reducts of a decision system.

5.2 Evaluation and Discussion

In this section, we perform a comparative analysis of the proposed algorithm (GCreduct)

versus RGonCRS, fast–CT–EXT, and fast–BR. These are the most recent and fastest

algorithms for reduct computation reported in the literature. Since all these algorithms

have exponential complexity, then we perform an experimental comparison among them.

We evaluate all algorithms over decision systems from the UCI machine learning repos-

itory [3] and synthetic basic matrices. In all cases the author’s implementation of the

algorithm was used. All experiments were run on a Core i7-5820K Intel processor at

3.30GHz, with 32GB in RAM, running GNU/Linux.

Since RGonCRS is implemented in Matlab and it operates directly over the deci-

sion system, in Subsection 5.2.1, we compare GCreduct against RGonCRS over de-

cision systems by using a Matlab implementation of the proposed algorithm. Then,

in Subsection 5.2.2, we show a comparative study of GCreduct against fast–CT–EXT

and fast–BR over basic matrices computed from decision systems taken from the UCI

repository, by using a Java implementation of the proposed algorithm. Finally, in Sub-

section 5.2.3, we present an experimental study including fast–CT–EXT, GCreduct

and fast–BR over synthetic basic matrices. In this final experiment, we discuss the

algorithms’ performance regarding some properties of the basic matrix.

5.2.1 GCreduct vs. RGonCRS

In order to make a fair comparison against RGonCRS, we used its author’s implementa-

tion in Matlab and we implemented GCreduct in Matlab as well. For this experiment,
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we selected 15 decision systems from the UCI machine learning repository [3]. Objects

with missing data were removed as in [51]. For numerical attributes, we used the Weka’s

equal width discretization filter with 10 bins, as describe in [12]. This experiment was

run using Matlab R2015a.

Table 5.3: RGonCRS and GCreduct runtime for decision systems taken from the UCI
repository.

Decision RGonCRS GCreduct
system Attributes Instances Reducts runtime(s) runtime(s)

Chess (kr-vs-kp) 37 3196 4 124.31 4.79
Connect-4 43 6756 35 5245.23 26432.14
Credit-g 21 1000 846 23.95 4.78
Cylinder-bands 40 512 23534 152.19 148.50
Dermatology 35 366 112708 12683.77 2359.98
Diabetes 50 101766 77349 2507.16 10261.38
Flags 30 194 23543 316.50 520.41
Keyword-activity 37 1530 3 3.82 250.38
Landsat (train) 37 4435 12412798 >1500000 603970.39
Lung-cancer 57 32 4183355 31548.48 47239.18
QSAR-biodeg 42 1055 256 884.79 57.00
Sponge 46 76 10992 68.23 144.36
Student-mat 32 395 679121 21632.40 5153.27
Student-por 32 649 851584 27568.81 11852.47
Waveform 22 5000 86977 8739.26 5324.35

Table 5.3 shows the runtime of both algorithms for each decision system. The

runtime for GCreduct, shown in the last column of Table 5.3, includes the time taken

for computing the basic matrix. Notice that GCreduct performed faster than RGonCRS

in most decision systems.

5.2.2 GCreduct vs. fast–CT–EXT and fast–BR

For this experiment, we implemented the proposed algorithm in Java to make a fair

comparison against the Java implementations of fast–BR and fast–CT–EXT, provided

by their authors. The same 15 decision systems of the previous experiment were used.

The runtime in seconds for the three algorithms are shown in Table 5.4. In the sec-

ond column, the number of attribute subsets in the search space is shown. This value
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corresponds to the cardinality of the power set of conditional attributes of the deci-

sion system. We have sorted the decision systems in ascending order according this

value. Then, the number of evaluated candidates for the three algorithms is shown. In

Table 5.4, we can corroborate that fast–BR evaluates fewer candidates than fast–CT–

EXT and GCreduct in most cases, as we said above. However, since the cost of each

evaluation is higher in fast-BR than in GCreduct, the evaluation of fewer candidates

does not mean shorter runtime.

Table 5.4: Runtime and candidates evaluated by Fast–CT–EXT, GCreduct and Fast–
BR for decision systems taken from the UCI repository.

Decision Search Fast–CT–EXT GCreduct Fast-BR
System space cands runtime cands runtime cands runtime

Credit-g 1.0E6 2.2E5 0.05 1.1E5 0.06 1.2E5 0.12
Waveform 2.1E6 1.2E6 2.11 8.1E5 1.88 9.8E5 1.64
Flags 5.4E8 2.0E7 1.00 1.2E7 0.74 7.1E6 1.06
Student-mat 2.1E9 7.4E8 1003.87 6.4E8 929.46 1.2E8 81.82
Student-por 2.1E9 1.2E9 1874.57 1.0E9 1657.90 2.1E8 161.35
Dermatology 1.7E10 2.0E8 16.02 1.5E8 12.25 2.3E7 4.62
Chess (kr-vs-kp) 6.9E10 6.4E8 7.45 2.9E1 <0.01 3.7E3 0.02
Keyword-activity 6.9E10 1.0E8 1.22 2.7E7 0.42 1.4E7 0.90
Landsat (train) 6.9E10 4.0E9 23797.99 1.1E10 9949.31 1.9E10 17732.49
Cylinder-bands 5.5E11 2.7E7 5.03 2.2E7 4.59 1.2E6 0.53
QSAR-biodeg 2.2E12 4.9E7 0.75 7.5E6 0.19 3.7E6 0.33
Connect-4 4.4E12 4.0E11 12876.67 1.3E9 44.23 9.9E8 160.61
Sponge 3.5E13 2.0E7 0.63 1.5E7 0.58 3.6E5 0.14
Diabetes 5.6E14 7.7E8 86.99 1.4E8 19.48 8.2E7 23.37
Lung-cancer 7.2E16 3.0E9 188.20 2.2E9 133.43 8.4E7 7.34

5.2.3 Finding a Relation Between Some Properties of the Ba-
sic Matrix and the Fastest Algorithms for Computing all
Reducts

Previous studies [34, 24, 31] categorize the basic matrices depending on the density of

1’s they have; i.e. the number of ones divided by the number of cells of the basic matrix.

Thus, we have selected the density of 1’s as the first characteristic of the basic matrix

to be studied. In order to explore the performance of GCreduct, fast–CT–EXT and



Chapter 5. GCreduct 61

fast–BR regarding the density of 1’s of the basic matrix; we conduct another experiment

over 500 randomly generated basic matrices with 2000 rows and 30 columns. The size of

these matrices was selected in order to keep reasonable runtime for the three algorithms.

The 500 basic matrices were generated with densities of 1’s uniformly distributed in

the range (0.20–0.80) using a step of 0.04.

Figure 5.1: Average runtime vs. density of 1’s for GCreduct, fast–CT–EXT and fast–
BR over all synthetic basic matrices.

For clarity purposes, the 500 synthetic basic matrices were divided into 15 bins by

discretizing the range of densities, each bin having approximately 33 basic matrices.

Figure 5.1 shows the average runtime for all matrices in each bin for the three algo-

rithms, as a function of the density of 1’s in the synthetic basic matrices. In this figure,

the vertical bars show the standard deviation into each bin.

From Figure 5.1, we can see that for matrices with density under 0.36 the fastest

algorithm was GCreduct, fast–BR was the fastest for matrices with density between

0.36 and 0.66, and the three algorithms show a similar performance for matrices with
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density above 0.66. The fact that basic matrices with high density do not constitute a

complex computational task for reduct computation [34], is clearly visible in Figure 5.1.

For this reason, a detailed analysis in this region lacks of relevance.

In order to explain the line delimiting those basic matrices for which GCreduct is

faster than fast–BR (densities under 0.36), we must go deeply into the main difference

between these algorithms. The evaluation of the attribute exclusion is the part with

the highest complexity within both algorithms (Θ(nm)). This operation is executed

more often in fast–BR than in GCreduct. The attribute exclusion occurs when there

is at least one column in the sub-matrix of the basic matrix, considering only the

attributes in the current candidate that can be removed without increasing the number

of zero rows in this sub-matrix. The exclusion is more frequent in matrices with higher

density, where overlapping of 1’s is more likely. The higher cost of candidate evaluation

in fast–BR pays off for basic matrices with higher densities (the limit identified from

our experiment is 0.36), because supersets of candidates with attribute exclusion are

excluded from subsequent evaluations. For instance, taking the extreme case of the

identity matrix, where there is no exclusion at all since every attribute is indispensable

to form a reduct. For this kind of basic matrices, GCreduct needs to evaluate as many

candidates as fast–BR but the former makes a single verification for exclusion with

the set of all attributes. On the other hand, fast–BR verifies the exclusion for each

candidate, which leads to higher runtime.

The Friedman and post hoc Nemenyi-Damico-Wolfe-Dunn tests show that GCreduct

was significantly faster (p–value < 10−16) than fast–CT–EXT for low (under 0.36) and

medium (between 0.36 and 0.66) density matrices. In relation to fast–BR, GCreduct

showed a significant runtime reduction (p–value < 10−16) for low density matrices while

it was significantly slower (p–value < 10−16) for medium density matrices. From this

analysis, we conclude that GCreduct is the best algorithm for low density matrices;
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while fast–BR is the best for medium density matrices. For high density matrices (over

0.66), any algorithm can be used since, as we already stated, computing reducts on this

kind of matrices does not constitute a complex computational task. Moreover, from

these findings a great advantage can be taken of selecting the appropriate algorithm

for a specific decision system, since the density of 1’s can be computed a priori with a

relatively low computational cost.

Table 5.5: Fast–CT–EXT, GCreduct and Fast–BR runtime for decision systems taken
from the UCI repository. Sorted by basic matrix density.

Decision Fast–CT–EXT Gcreduct Fast–BR
system Density runtime (s) runtime (s) runtime (s)

Chess (kr-vs-kp) 0.03 7.45 <0.01 0.02
Keyword-activity 0.04 1.22 0.42 0.90
Connect-4 0.05 12876.67 44.23 160.61
QSAR-biodeg 0.12 0.75 0.19 0.33
Landsat (train) 0.33 23797.99 9949.31 17732.49
Dermatology 0.34 16.02 12.25 4.62
Credit-g 0.35 0.05 0.06 0.12
Flags 0.35 1.00 0.74 1.06
Diabetes 0.38 86.99 19.48 23.37
Student-por 0.41 1874.57 1657.90 161.35
Sponge 0.42 0.63 0.58 0.14
Student-mat 0.43 1003.87 929.46 81.82
Lung-cancer 0.47 188.20 133.43 7.34
Waveform 0.50 2.11 1.88 1.64
Cylinder-bands 0.55 5.03 4.59 0.53

In Table 5.5, we included the density of 1’s and the runtime shown for each basic

matrix in Table 5.4. We also sorted the decision systems of Table 5.5 in ascending

order of the density of 1’s in their associated basic matrix. Although this is a small

heterogeneous sample, the rule obtained from synthetic data can be verified in this

table. For decision systems with basic matrix densities close to the boundary of 0.36

we cannot conclude which is the fastest algorithm, as it can be seen in Table 5.5.

However, for those decision systems which have a basic matrix with density clearly

under 0.36, GCreduct was the fastest. In the same way, fast-BR performed faster for

those decision systems having a basic matrix with density clearly above 0.36.
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In addition to the density of 1’s, other characteristics of the basic matrix were

explored such as: the number of reducts, and the standard deviation of 1’s by rows

and by columns. We found a positive correlation between the number of reducts in

the basic matrix and the runtime of the three algorithms. However, this correlation

lacks of practical application because the number of reducts cannot be computed a

priori. Unfortunately, we did not found a significant correlation between the standard

deviation of 1’s (both by columns and by rows) and the algorithms’ runtime.

5.3 Concluding Remarks

In this chapter, we introduced a new algorithm, GCreduct, for computing all reducts of

a decision system. In the proposed algorithm, the search space is traversed evaluating

some candidate subsets and, based on pruning properties, many others are discarded.

Algorithms reported in the literature use operations with high cost for candidate eval-

uation, in order to reduce the number of evaluated candidates. The main contribution

of our proposal, unlike previous algorithms, is the use of simpler operations for can-

didate evaluation, based on the pruning properties of gap elimination and attribute

contribution, for a faster reduct computation.

After conducting a series of experiments over synthetic basic matrices and decision

systems from the UCI repository, we can conclude that GCreduct performs faster than

fast–BR and fast–CT–EXT on those decision systems whose associated basic matrix

has a density of 1’s under 0.36. This result provides a tool to select the algorithm that

performs better for a specific decision system.



Chapter 6
A New Algorithm for Computing
All the Shortest Reducts

In this chapter, we present a new algorithm, called MinReduct, for computing all the

shortest reducts of a decision system. For developing this new algorithm, the search

strategy of GCreduct was adapted to compute only the shortest reducts. MinReduct

is supported mainly on attribute contribution and binary cumulative operations. In

addition, the relation between some properties of the basic matrix and the fastest

algorithms for computing the shortest reducts is studied.

The rest of this chapter is structured as follows. In Section 6.1, we introduce the

MinReduct algorithm for computing all the shortest reducts of a decision system. In

Section 6.2, an evaluation of the proposed algorithm and a discussion of the experimen-

tal results are presented. Finally, our concluding remarks appear in Section 6.3.

6.1 MinReduct

In this section, we introduce the MinReduct algorithm for computing all the shortest

reducts of a decision system. In addition to the theoretical foundations of CT–EXT

and GCreduct, the following proposition, introduced in [59], has a remarkable relevance

for computing the shortest reducts.

Proposition 6.1 Let BM be a basic matrix and B be a subset conditional attributes of

a decision system, if B is one of the shortest super–reducts of BM, then it is also one

of the shortest reducts of BM.

In other words, the shortest super–reducts of a decision system are also the shortest

65
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reducts. Notice that every reduct is a super–reduct; and from the condition 2 of the

reduct definition, reducts are minimal with respect to inclusion. Proposition 6.1 is spe-

cially useful when computing the shortest reducts because a huge amount of exclusion

evaluations can be avoided.

In order to reduce the search space, MinReduct arranges the basic matrix in the

same way as GCreduct [32].

6.1.1 The MinReduct algorithm

MinReduct finds all the shortest reducts in the basic matrix of a decision system. The

key aspects about the proposed algorithm are the use of binary cumulative operations

and a fast candidate evaluation process. The search space is pruned such that can-

didates larger than the shortest reduct found so far are not evaluated. MinReduct

searches for super–reducts since the shortest super–reducts are indeed the shortest

reducts according to Proposition 6.1.

The MinReduct algorithm traverses the search space in the lexicographical order.

A new attribute is added to the current candidate if the candidate is shorter than the

shortest super–reducts found so far and the new attribute contributes to the candidate

(i.e. the new attribute allows reducing the number of zero rows). If the new attribute

contributes, the candidate is evaluated for the super–reduct condition. If it is a super–

reduct there are two possibilities: the candidate has the same cardinality of the shortest

super–reducts found so far, or the candidate has smaller cardinality than the shortest

super–reducts found so far. In the first case the candidate is saved in the result set;

in the second case all previously saved super–reducts are removed, and the current

candidate is saved as the only element of the result. When the last attribute from the

basic matrix is included in the candidate, the algorithm searches for a gap in order

to avoid unneeded evaluations. This process continues until the first attribute in the
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candidate has 0 in the first row of the basic matrix. Once this condition is reached, the

algorithm finishes because there are no remaining reducts (proposition 4.2).

Algorithm 6.1 shows the pseudocode of MinReduct. MinReduct operates over the

arranged basic matrix. After initializing the current candidate with the first attribute,

the attribute contribution is evaluated by means of Definition 4.2. For those candidates

with a contributing attribute, the super–reduct condition is evaluated by means of

Definition 4.1. super–reducts, are saved in the result (SR) and if the current candidate

has smaller cardinality than the minimum found so far (maxCard), the previously

stored super–reducts are removed. At this point, the candidate evaluation is finished

and the next candidate subset is generated.

The candidate generation process follows the lexicographical order, skipping some

unnecessary evaluations when possible. If the current candidate includes the last at-

tribute of the arranged basic matrix, the gap is eliminated. Otherwise, the lexicograph-

ical order is followed pruning candidates with a cardinality greater than maxCard, and

supersets of candidates with a non contributing attribute.

The function eliminateGap searches for a gap in the current candidate and elim-

inates it by skipping unnecessary evaluations as it is proposed in the Corollary 5.1.

The function exclusion evaluates the exclusion for the current candidate, as described

in Propositions 5.2 and 5.3. The function eliminateOne generates the next candidate

following the lexicographical order. The function Next returns the following attribute

in the arranged basic matrix.

An example of the execution of MinReduct over the basic matrix of Table 4.1 is

shown in Table 6.1. The first column shows the iteration number corresponding to the

evaluated candidate. The second column shows the position of the current candidate in

the lexicographical order. It is important to notice that there are 127 attribute subsets

in the search space of this example, but only 34 of them are evaluated. In the last
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Algorithm 6.1 MinReduct algorithm for computing all the shortest reducts
Input: BM . The arranged basic matrix

cx . First attribute with a 0 in the first row
cmax . Last attribute in the arranged basic matrix

Output: SR . Set of all the shortest reducts
1: B ⇐ [ ] . Subset of attributes in the candidate
2: c⇐ c0 . New attribute to add in the candidate
3: maxCard⇐∞ . Cardinality of the shortest super–reduct found so far
4: while B 6= [cx] do
5: contributes⇐ False
6: superReduct⇐ False
7: if Contribution(B + [c]) then
8: contributes⇐ True
9: if SuperReduct(B + [c]) then

10: superReduct⇐ True
11: if |B + [c]| < maxCard then
12: maxCard⇐ |B + [c]|
13: SR⇐ {B + [c]} . All previous super–reducts are discarded
14: else
15: SR⇐ SR ∪ {B + [c]}
16: if c = cmax then . Last attribute reached
17: if superReduct = False then
18: B + [c]⇐ eliminateGap(B)
19: else
20: if exclusion(B + [c]) = False then
21: B + [c]⇐ eliminateGap(B) . Candidate is a reduct
22: else
23: B + [c]⇐ eliminateOne(B)
24: maxCard⇐ maxCard− 1 . A super–reduct that is not a reduct
25: SR⇐ ∅
26: else
27: if (contributes = True) ∧ (superReduct = False) ∧ (|B + [c]| < maxCard) then
28: B ⇐ B + [c]

29: c⇐ Next(c)
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column, some comments are included.

Table 6.1: Execution of MinReduct over the basic matrix of Table 4.1.

Iter Pos Candidate Comments

1 1 [c′0] c′0 contributes to [ ] but the candidate is not a super–reduct. Add a new attribute.

2 2 [c′0, c
′
1] c′1 does not contribute to [c′0]. Remove c′1.

3 34 [c′0, c
′
2] c′2 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

4 35 [c′0, c
′
2, c
′
3] c′3 contributes to [c′0, c

′
2] but the candidate is not a super–reduct. Add a new attribute.

5 36 [c′0, c
′
2, c
′
3, c
′
4]

The candidate is a super–reduct, it is saved and its cardinality (4) is taken as the new

limit for candidates’ size.

6 40 [c′0, c
′
2, c
′
3, c
′
5] The candidate is a super–reduct and it is saved.

7 42 [c′0, c
′
2, c
′
3, c
′
6]

The candidate is a super–reduct. Since it is not a reduct, gap cannot be eliminated. The

limit of cardinality is decremented (3). All previous super–reducts are dismissed.

8 43 [c′0, c
′
2, c
′
4] The candidate is a super–reduct and it is saved.

9 47 [c′0, c
′
2, c
′
5] c′5 contributes to [c′0, c

′
2] but the limit of candidate’s size has been reached. Remove c′5.

10 49 [c′0, c
′
2, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′2) is

eliminated.

11 50 [c′0, c
′
3] c′3 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

12 51 [c′0, c
′
3, c
′
4] c′4 contributes to [c′0, c

′
3] but the limit of candidate’s size has been reached. Remove c′4.

13 55 [c′0, c
′
3, c
′
5] c′5 contributes to [c′0, c

′
3] but the limit of candidate’s size has been reached. Remove c′5.

14 57 [c′0, c
′
3, c
′
6]

The candidate is a super–reduct and it is saved. Since the last attribute is included and

the candidate is a reduct, the gap (c′3) is eliminated.

15 58 [c′0, c
′
4] c′4 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

16 59 [c′0, c
′
4, c
′
5] c′5 does not contribute to [c′0, c

′
4]. Remove c′5.

17 61 [c′0, c
′
4, c
′
6]

The candidate is a super–reduct and it is saved. Since the last attribute is included and

the candidate is a reduct, the gap (c′4) is eliminated.
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Iter Pos Candidate Comments

18 62 [c′0, c
′
5] c′5 contributes to [c′0] but the candidate is not a super–reduct. Add a new attribute.

19 63 [c′0, c
′
5, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′0) is

eliminated.

20 65 [c′1] c′1 contributes to [ ] but the candidate is not a super–reduct. Add a new attribute.

21 66 [c′1, c
′
2] c′2 contributes to [c′1] but the candidate is not a super–reduct. Add a new attribute.

22 67 [c′1, c
′
2, c
′
3] c′3 contributes to [c′1, c

′
2] but the limit of candidate’s size has been reached. Remove c′3.

23 75 [c′1, c
′
2, c
′
4] c′4 contributes to [c′1, c

′
2] but the limit of candidate’s size has been reached. Remove c′4.

24 79 [c′1, c
′
2, c
′
5] c′5 contributes to [c′1, c

′
2] but the limit of candidate’s size has been reached. Remove c′5.

25 81 [c′1, c
′
2, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′2) is

eliminated.

26 82 [c′1, c
′
3] c′3 contributes to [c′1] but the candidate is not a super–reduct. Add a new attribute.

27 83 [c′1, c
′
3, c
′
4] c′4 contributes to [c′1, c

′
3] but the limit of candidate’s size has been reached. Remove c′4.

28 87 [c′1, c
′
3, c
′
5] c′5 contributes to [c′1, c

′
3] but the limit of candidate’s size has been reached. Remove c′5.

29 89 [c′1, c
′
3, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′3) is

eliminated.

30 90 [c′1, c
′
4] c′4 contributes to [c′1] but the candidate is not a super–reduct. Add a new attribute.

31 91 [c′1, c
′
4, c
′
5] c′5 contributes to [c′1, c

′
4] but the limit of candidate’s size has been reached. Remove c′5.

32 93 [c′1, c
′
4, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′4) is

eliminated.

33 94 [c′1, c
′
5] c′5 contributes to [c′1] but the candidate is not a super–reduct. Add a new attribute.

34 95 [c′1, c
′
5, c
′
6]

The candidate is not a super–reduct. Since the last attribute is included, the gap (c′1) is

eliminated.

35 97 [c′2]

The algorithm finishes because the column of the basic matrix corresponding to the

leftmost attribute in the candidate (c′2) has a zero in the first row.

SR = {[c′0, c′2, c′4], [c′0, c
′
3, c
′
6], [c′0, c

′
4, c
′
6]}
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In this example, MinReduct starts with the list B = [ ] and c = c′0 such that the

first candidate is B + [c] = [c′0]. Clearly the new attribute (c′0) contributes to B = [ ],

therefore the next candidate is [c′0, c
′
1]. As it can be seen in Table 4.1, the attribute c′1

does not contribute to [c′0] since there are three zero rows in the sub-matrix formed by

[c′0, c
′
1] as well as in the sub-matrix formed by [c′0]. Thus, the attribute c′1 is removed

and all the supersets of [c′0, c
′
1] are pruned. Following the lexicographical order, the next

candidate is [c′0, c
′
2]. Notice that, using Proposition 4.1, we have jumped from the second

candidate in the search space to the candidate number 34. c′2 contributes to [c′0]; then,

the next candidate is constructed by keeping c′2 (B + [c] = [c′0, c
′
2, c
′
3]). c′3 contributes

to [c′0, c
′
2]; thus, the next candidate is [c′0, c

′
2, c
′
3, c
′
4]. This candidate is a super–reduct

since there are no zero rows in the sub-matrix formed by the attributes in this list.

Thus, [c′0, c
′
2, c
′
3, c
′
4] is stored in SR and maxCard is updated to four, since there is no

reason for analysing greater candidates. The attribute c′4 is removed to form the next

candidate [c′0, c
′
2, c
′
3, c
′
5] jumping from the 36th to the 40th candidate. This candidate is

also a super–reduct and it is saved in SR. The next candidate is [c′0, c
′
2, c
′
3, c
′
6] because

c′5 has been removed in the same way as c′4. This new candidate is also a super–reduct

and it is also saved. This time, the last attribute has been reached, but the candidate

is not a reduct. Since the candidate is a super–reduct but it is not a reduct, the gap

cannot be eliminated. Indeed, we have found that there are reducts with a cardinality

smaller than maxCard; thus, we make SR = ∅ and maxCard = maxCard− 1 (three).

The next candidate is [c′0, c
′
2, c
′
4], which is the following candidate in the lexicographical

order. This candidate is a super–reduct and it is saved. Then, c′4 is eliminated and

B + [c] = [c′0, c
′
2, c
′
5]. c′5 contributes to [c′0, c

′
2] but this candidate is not a super–reduct;

since the maximum allowed cardinality has been reached, it makes no sense to add a

new attribute. Thus, c′5 is eliminated and B + [c] = [c′0, c
′
2, c
′
6]. This candidate is not

a super–reduct and includes the last attribute. Then, the gap is eliminated to prune



Chapter 6. MinReduct 72

subsets of this candidate. The gap in this case is c′2 and the next candidate is [c′0, c
′
3].

c′3 contributes to [c′0]; then, we keep c′3 and B + [c] = [c′0, c
′
3, c
′
4]. This candidate is not

a super–reduct and c′4 is removed because the maximum cardinality has been reached.

Thus, the next candidate is [c′0, c
′
3, c
′
5]. This candidate is not a super–reduct and again

the last attribute is removed; therefore, the next candidate is [c′0, c
′
3, c
′
6]. The current

candidate is a super–reduct (also a reduct) and it is saved in SR. This time, the gap

is eliminated to prune subsets of a reduct. The rest of the example in Table 6.1 follows

the above described process. The algorithm finishes after the candidate [c′1, c
′
5, c
′
6] while

evaluating [c′2], which has a 0 in the first row of the basic matrix.

During the search process, MinReduct evaluates some attribute subsets while dis-

cards some others. Propositions 5.1, 4.1 and 4.2 as well as the minimality condition

of reducts, guarantee that none of the discarded attribute subsets is a reduct. This is

formalized in Proposition 6.2.

Proposition 6.2 The algorithm MinReduct finds all the shortest reducts of a decision

system.

Proof. The algorithm MinReduct traverses the search space of attribute subsets in the

lexicographical order. During the search process, some attribute subsets are evaluated

while other ones are discarded in the following cases:

� Supersets of an attribute subset which has a non contributing attribute (Proposi-

tion 4.1).

� Candidates larger than the shortest super–reduct found so far.

� Subsets of a reduct (Proposition 5.1), or a non super–reduct (Corollary 5.1), which

includes the last attribute of the basic matrix.
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� The remaining candidates, when the column of the basic matrix corresponding to

the leftmost attribute in the candidate has a zero in the first row (Proposition 4.2).

Since all attribute subsets discarded by the searching process are certainly not among the

shortest reducts, we can state that MinReduct finds all the shortest reducts of a decision

system.

6.2 Evaluation and Discussion

In this section, we perform a comparative analysis of the proposed algorithm (MinReduct)

versus SRGA [44] and CAMARDF [59]. We have selected SRGA and CAMARDF be-

cause they are the fastest algorithms in the state of the art. Since all these algorithms

have exponential complexity, we perform a comparison through their implementations.

For our experiments, we have implemented MinReduct and SRGA in Java, and we use

the implementation of CAMARDF provided by their authors in C.

Evaluations are performed over synthetic basic matrices and real–world datasets

taken from the UCI machine learning repository [3]. All experiments were run on a

PC with a Core i7-5820K Intel processor at 3.30GHz, with 32GB in RAM, running

GNU/Linux.

6.2.1 Finding a Relation Between Some Properties of the Ba-
sic Matrix and the Fastest Algorithms for Computing all
the Shortest Reducts

For this experiment, we used the same 500 synthetic basic matrices with 2000 rows and

30 columns, that were generated for the experiments of the subsection 5.2.3.

Figure 6.1 shows the average runtime for the three algorithms, as a function of the

density of 1’s in the synthetic basic matrices. For clarity purposes, the 500 matrices were
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Figure 6.1: Average runtime vs. density of 1’s for SRGA, CAMARDF and MinReduct.

divided into 15 bins by discretizing the range of densities, each bin having approximately

33 basic matrices. In this figure, the vertical bars show the standard deviation of each

bin.

From Figure 6.1, we notice that CAMARDF was the fastest for matrices with a

density under 0.24 while MinReduct was the fastest for matrices with a density above

0.24. Although MinReduct had better performance for most basic matrices, it should be

pointed out that for densities of 1’s under 0.24, our proposed algorithm showed a not so

good performance. This behavior can be explained by looking into the main differences

between MinReduct and the other two algorithms. The discernibility function for basic

matrices with low density of 1’s is very small. Thus, candidate evaluations become

very fast in CAMARDF as well as in SRGA, since they iterate over the complete

discernibility function. However, for MinReduct, the dimensions of the basic matrix has

no relation with its density. Furthermore, for MinReduct there are no simplifications

in the candidate evaluation process for low densities of 1’s.
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In addition to the density of 1’s, the correlation between the standard deviation

of 1’s by rows and by columns, and the algorithms’ runtime was studied. Again, we

did not found a significant correlation between these properties and the algorithms’

runtime.

6.2.2 Evaluation over real datasets

In order to evaluate the relation found before, between the density of a basic matrix and

the performance of the algorithms, we present a comparative experiment between our

proposed algorithm MinReduct and the other two algorithms over a set of 15 real–world

datasets taken from the UCI machine learning repository [3]. For numerical attributes,

we used the Weka’s equal width discretization method with 10 bins, as describe in [12].

Table 6.2: Datasets taken from the UCI repository sorted according to the density of
their basic matrix.

Dataset Attributes Instances Density Rows Reducts
Keyword-activity 37 1530 0.04 26 3
Soybean 35 307 0.11 28 359
QSAR-biodeg 42 1055 0.12 40 256
Anneal 38 63 0.21 62 313
Dermatology 35 366 0.34 1103 112708
LED24 25 200 0.34 2458 66800
Student-mat 32 395 0.43 6253 679121
Lung-cancer 57 32 0.47 237 4183355
Arrhythmia 279 452 0.54 52951 -
Optdigits (train) 64 382 0.59 29758 20923529
Landsat (test) 36 2000 0.74 7980 1050755
Ionosphere 34 351 0.74 250 5759
SPECT Heart 22 267 0.90 2284 38473
Ozone 72 575 0.93 5751 82755
Sonar 60 208 0.95 426 3423

In Table 6.2, we show the name of the datasets used in our experiment and their

dimensions, as well as the density of 1’s and the number of rows of their basic matrix,

and their total number of reducts. Datasets in Table 6.2 are sorted in ascending order
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Table 6.3: CAMARDF, SRGA and MinReduct runtime for datasets from the UCI
repository.

Shortest CAMARDF SRGA MinReduct
Dataset Density Reducts Size runtime (ms) runtime (ms) runtime (ms)

Keyword-activity 0.04 1 25 <1 3 431
Soybean 0.11 29 11 <1 3 284
QSAR-biodeg 0.12 2 13 7 3 278
Anneal 0.21 15 7 2 4 16
Dermatology 0.34 137 6 114 45 73
LED24 0.34 95 11 1368 521 540
Student-mat 0.43 6 18 530 178 155
Lung-cancer 0.47 112 4 619 26 25
Arrhythmia 0.54 405 2 - 2632 57
Optdigits (train) 0.59 600 5 48368 15492 3754
Landsat (test) 0.74 432 5 - 1815 131
Ionosphere 0.74 10 2 3 3 1
SPECT Heart 0.90 3551 3 - 747 15
Ozone 0.93 239 2 117 193 6
Sonar 0.95 1222 2 - 48 2

regarding the density of their basic matrix.

In Table 6.3, we show the number and cardinality of the shortest reducts for each

dataset, as well as the runtime of the three algorithms. In this experiment, CAMARDF

ran out of memory for four datasets (denoted as “-”). From this experiment, we con-

clude that the rule obtained for synthetic matrices is also satisfied by real datasets, i.e.

CAMARDF and SRGA are faster for basic matrices with low density of 1’s, otherwise

MinReduct is the fastest.

For Arrhythmia the total number of reducts could not be computed after 1500 hours.

However, all the shortest reducts were found in a very small time by MinReduct, as it

can be seen in Table 6.3. This runtime reduction makes the shortest reduct computation

useful for larger datasets, specially those with high dimensionality, for which computing

all reducts is unfeasible.
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6.3 Concluding Remarks

In this chapter, we introduced a new algorithm, MinReduct, for computing all the

shortest reducts of a decision system. The proposed algorithm uses binary cumulative

operations and a fast candidate evaluation process. Previous algorithms, reported in

the literature, operate over the discernibility function and relay on high cost operations

for generating and evaluating candidates.

After conducting a series of experiments over synthetic basic matrices and real

datasets from the UCI machine learning repository, we can conclude that MinReduct

performs faster than the fastest previously reported algorithms on those datasets whose

associated basic matrix has a density of 1’s above 0.24. This result provides also a tool

to select the fastest algorithm for a specific dataset.





Chapter 7
Conclusions

The notion of reduct is an important concept within Rough Set Theory. Reducts are

minimal subsets of attributes preserving the discernibility capacity of the whole set

of attributes in a decision system. Unfortunately, computing all reducts of a decision

system is NP–hard, and thus several approximate algorithms have been proposed to

overcome the high complexity of this problem. However, approximate algorithms do

not return the complete set of reducts, and sometimes they obtain non minimal subsets.

Hence, the development of exact algorithms for speeding up reduct computation is an

active research topic.

From our literature review, we found that hardware implementations had been re-

ported as the fastest approach to reduct computation. Thus, as a first step in this PhD

research, a new hardware platform for computing all reducts of a decision system was

proposed. Our proposed platform outperforms previous hardware and software imple-

mentations in terms of runtime. However, the size of the problem that can be solved by

hardware platforms is significantly limited by the FPGA resources; which reduces their

practical application. Therefore, the PhD research was directed to the development of

new algorithms for speeding up reduct computation. In this direction, a new algorithm

for computing all reducts of a decision system that uses fast operations for candidate

evaluation, which allows reducing the runtime for a specific kind of decision systems,

was introduced. In addition, an experimental study for finding a relation between some

properties of a decision system and the fastest algorithms for computing all reducts,

was presented.

Furthermore, a new algorithm for computing all the shortest reducts was introduced.

79
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Our proposed algorithm is competitive with other algorithms in the state–of–the–art for

the general case, and faster for a specific kind of decision systems. Also, an experimental

study on the relation between some properties of a decision system and the fastest

algorithms for computing the shortest reducts, was performed.

The rest of this chapter is structured as follows. Section 7.1 presents the conclusions

of this PhD research. In Section 7.2, our contributions are shown. Section 7.3 contains

some directions for future work. Finally, in Section 7.4, the publications derived from

this PhD research are listed.

7.1 Conclusions

The general objective of this PhD research, regarding the development of new algo-

rithms for computing reducts of decision systems; which should be comparable to state

of the art algorithms in most datasets, and faster in some specific kinds of datasets,

was successfully accomplished.

Regarding our proposed hardware architecture for computing all reducts on decision

systems, based on our experimental results, we can conclude that:

� The proposed platform, based on the CT–EXT algorithm [36], uses fewer hard-

ware resources and it is able to run at higher clock frequency than the hardware

implementation of BT [34]. This characteristic allows processing larger matrices.

Furthermore, the proposed platform is the fastest hardware architecture for com-

puting all reducts of a decision system. This result meets the specific objective of

developing a new algorithm for computing all reducts.

� Hardware platforms for reduct computation are faster for basic matrices big

enough to overcome the delay of the synthesis process and to take advantage

of the single clock candidate evaluation; but the size of these basic matrices is
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limited by the FPGA resources. This issue drastically reduces their practical

application.

Regarding our proposed algorithm for computing all reducts of a decision system,

based on our experimental results, we can conclude that:

� Our proposed algorithm GCreduct is the fastest algorithm for computing all

reducts on those decision systems whose associated basic matrix has a density

of 1’s lower than 0.36. This result meets the specific objective of developing a

new algorithm for computing all reducts.

� We found a relation between the density of 1’s in the basic matrix and the fastest

algorithms for computing all reducts. This relation can be used as an effective

tool for selecting a priori the best algorithm for a specific decision system. This

result meets the specific objective of finding a relation between some properties

of the basic matrix and the fastest algorithms for computing all reducts.

Regarding our proposed algorithm for computing all the shortest reducts of a deci-

sion system, based on our experimental results, we can conclude that:

� Our proposed algorithm MinReduct performs faster than the fastest previously

reported algorithms on those decision systems whose associated basic matrix has

a density of 1’s higher than 0.24. This result meets the specific objective of

developing a new algorithm for computing all the shortest reducts.

� We also found a relation between the density of 1’s in the basic matrix and the

fastest algorithms for computing all the shortest reducts. This relation can be

used as an effective tool for selecting a priori the best algorithm for computing all

the shortest reducts of a specific decision system. This result meets the specific

objective of finding a relation between some properties of the basic matrix and

the fastest algorithms for computing all the shortest reducts.
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7.2 Contributions

The contributions of this PhD research are the following:

� A new hardware–software platform for computing all reducts based on the CT–

EXT algorithm; which performs faster, and is able to process larger problems,

than previous hardware platforms for computing all reducts.

� A new algorithm (GCreduct) for computing all reducts based on a fast candidate

evaluation process. This algorithm is the fastest alternative for reduct computa-

tion on those decision systems whose associated basic matrix has low density of

1’s.

� A relation based on the density of 1’s of the basic matrix for determining a priori

the fastest algorithm for computing all reducts of a specific decision system.

� A new algorithm (MinReduct) for computing all the shortest reducts based on

a fast candidate evaluation process. This algorithm is the fastest alternative for

reduct computation on those decision systems whose associated basic matrix has

medium or high density of 1’s.

� A relation based on the density of 1’s of the basic matrix for determining a priori

the fastest algorithm for computing all the shortest reducts of a specific decision

system.

7.3 Future work

The results obtained in this PhD research open further studies on exact algorithms for

computing reducts. As future work, we proposed the following:
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� The amount of resources required by hardware architectures for reduct compu-

tation determines the maximum size of the basic matrix that can be processed.

Thus, the search for new algorithms that could be efficiently (requiring fewer re-

sources) implemented on an FPGA, constitutes an important direction for future

work.

� New ways for improving hardware architectures, such as testing two or more

candidates at the same time, are still unexplored and should be evaluated.

� Further studies would include a deeper exploration of the relation between some

other dataset’s properties and the performance of different strategies for comput-

ing reducts. For example, the rank of the basic matrix, its dimension and the

minimum number of 1’s in a row, were not considered in this research. We think

that the selection of the appropriate algorithm for a given dataset can drastically

reduce the runtime.

� Another interesting line for future research is the development of a meta–algorithm

that uses the relations found in this research for switching the search strategy

through the searching process as a function of the basic–matrix’s properties.



Chapter 7. Conclusions 84

7.4 Publications

The following publications were derived from this PhD research.

JCR Journals:

� Rodŕıguez-Diez, V. et al. (2020). MinReduct: A new algorithm for computing
the shortest reducts. Pattern Recognition Letters, 138, 177–184. [IF: 3.255, Q1]

� Rodŕıguez-Diez, V. et al. (2018). A new algorithm for reduct computation based
on gap elimination and attribute contribution. Information Sciences, 435, 111–
123. [IF: 4.832, Q1]

� Rodŕıguez-Diez, V. et al. (2015). A fast hardware software platform for comput-
ing irreducible testors. Expert Systems with Applications, 42(24), 9612–9619. [IF:
3.928, Q1]

Conference Proceedings:

� Rodŕıguez-Diez, V. et al. A Comparative Study of Two Algorithms for Computing
the Shortest Reducts: MiLIT and MinReduct. Lecture Notes in Computer Science
12725, 57–67, 2021.

� Rodŕıguez-Diez, V. et al. The Impact of Basic Matrix Dimension on the Perfor-
mance of Algorithms for Computing Typical Testors. Lecture Notes in Computer
Science 10880, 41–50, 2018.

� Rodŕıguez-Diez, V. et al. Fast–BR vs. Fast–CT EXT: An Empirical Performance
Study. Lecture Notes in Computer Science 10267, 127–136, 2017.

� Rodŕıguez-Diez, V. et al. A hardware architecture for filtering irreducible testors.
In ReConFigurable Computing and FPGAs (ReConFig), 2014 International Con-
ference on, 1–4, 2014.

Book Chapter:

� Rodŕıguez-Diez, V. et al. (2017). Algorithms for Computing Rough Set Reducts.
In Combinatorial Algorithms and Learning (13–23). Montiel & Soriano Editores,
BUAP.

Technical Report:

� Rodŕıguez-Diez, V. & Mart́ınez-Trinidad, J. F. Development of fast algorithms
for reduct computation (Report No. CCC–16–005). Puebla, Mexico: Instituto
Nacional de Astrof́ısica, Óptica y Electrónica, 1–44, 2016.

Unpublished:

� Rodŕıguez-Diez, V. et al. A Review on Algorithms for Computing Reducts. To
be summited to Artificial Intelligence Review. [IF: 2.627, Q1]

https://www.sciencedirect.com/science/article/abs/pii/S0167865520302506
https://www.sciencedirect.com/science/article/abs/pii/S0167865520302506
https://www.sciencedirect.com/science/article/pii/S0020025517311520
https://www.sciencedirect.com/science/article/pii/S0020025517311520
https://www.sciencedirect.com/science/article/pii/S0957417415004972
https://www.sciencedirect.com/science/article/pii/S0957417415004972
https://link.springer.com/chapter/10.1007/978-3-030-77004-4_6
https://link.springer.com/chapter/10.1007/978-3-030-77004-4_6
https://www.springer.com/us/book/9783319921976
https://www.springer.com/us/book/9783319921976
https://link.springer.com/chapter/10.1007/978-3-319-59226-8_13
https://link.springer.com/chapter/10.1007/978-3-319-59226-8_13
https://ieeexplore.ieee.org/document/7032526/
http://posgrado.cs.buap.mx/2017/files/Publicaciones2014_2017_Protected.pdf
https://ccc.inaoep.mx/archivos/CCC-16-005.pdf
https://ccc.inaoep.mx/archivos/CCC-16-005.pdf


Bibliography

[1] Alba-Cabrera, E., Ibarra-Fiallo, J., Godoy-Calderon, S., and Cervantes-Alonso, F. (2014).
YYC: A Fast Performance Incremental Algorithm for Finding Typical Testors. In Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 416–
423. Springer.

[2] Alba-Cabrera, E., Santana, R., Ochoa, A., and Lazo-Cortés, M. (2000). Finding typi-
cal testors by using an evolutionary strategy. In Proceedings of the Fith Ibero American
Symposium on Pattern Recognition, volume 0, pages 267–278.

[3] Bache, K. and Lichman, M. (2013). UCI machine learning repository.

[4] Chen, Y., Miao, D., and Wang, R. (2010). A rough set approach to feature selection based
on ant colony optimization. Pattern Recognition Letters, 31(3):226–233.

[5] Chen, Y., Zhu, Q., and Xu, H. (2015). Finding rough set reducts with fish swarm algo-
rithm. Knowledge-Based Systems, 81:22–29.

[6] Chikalov, I., Lozin, V. V., Lozina, I., Moshkov, M., Nguyen, H. S., Slowron, A., and
Zielosko, B. (2013). Three approaches to data analysis. Springer Science & Business Media.

[7] Chouchoulas, A. and Shen, Q. (2001). Rough set-aided keyword reduction for text cate-
gorization. Applied Artificial Intelligence, 15(January):843–873.

[8] Cumplido, R., Carrasco-Ochoa, J. A., and Feregrino, C. (2006). On the Design and
Implementation of a High Performance Configurable Architecture for Testor Identification
LNCS.pdf. In CIARP 2006, pages 665–673.

[9] Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397.

[10] Digilent Inc. (2010). Digilent Synchronous Parallel Interface (DSTM) Programmer’s
Reference Manual.

[11] Digilent Inc. (2013). Atlys Board Reference Manual.
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[23] Lias-Rodŕıguez, A. and Pons-Porrata, A. (2009). BR: A new method for computing all
typical testors. In CIARP 2009, volume 5856, pages 433–440.

[24] Lias-Rodŕıguez, A. and Sanchez-Diaz, G. (2013). An Algorithm for Computing Typical
Testors Based on Elimination of Gaps and Reduction of Columns. International Journal
of Pattern Recognition and Artificial Intelligence, 27(08):1350022.

[25] Lin, T. Y. and Yin, P. (2004). Heuristically Fast Finding of the Shortest Reducts. In
Rough Sets and Current Trends in Computing, pages 465–470. Springer Berlin Heidelberg.

[26] Parthaláin, N. M., Jensen, R., and Shen, Q. (2008). Finding fuzzy-rough reducts with
fuzzy entropy. IEEE International Conference on Fuzzy Systems, pages 1282–1288.

[27] Pawlak, Z. (1981). Classification of objects by means of attributes. Polish Academy of
Sciences [PAS]. Institute of Computer Science.



Bibliography 87

[28] Piza-Davila, I., Sanchez-Diaz, G., Aguirre-Salado, C. A., and Lazo-Cortes, M. S. (2014).
A parallel hill-climbing algorithm to generate a subset of irreducible testors. Applied Intel-
ligence, 42(4):622–641.

[29] Piza-Davila, I., Sanchez-Diaz, G., Lazo-Cortes, M. S., and Rizo-Dominguez, L. (2017).
A CUDA-based hill-climbing algorithm to find irreducible testors from a training matrix.
Pattern Recognition Letters, 95:22–28.
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