Repository logo
    menu.section.about_menu
    All of DSpace
  • English
  • Español
  • Português
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ortiz Frade, Luis A."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Artículo
    Electrochemical biosensor for sensitive quantification of glyphosate in maize kernels
    (2019-02-12) Méndez Albores, Alia; Cahuantzi Muñoz, Selene L.; González Fuentes, Miguel A.; Ortiz Frade, Luis A.; Torres, Eduardo; Ţălu, Ştefan; Trejo, G.; Méndez Albores, Alia; 0000-0002-9047-8766; González Fuentes, Miguel A.; 0000-0003-0630-151X; Ştefan Ţălu, Ştefan Ţălu; 0000-0003-1311-7657
    "A graphite-epoxy electrode (GE) modified with multiwalled carbon nanotubes (MWCNTs) and horseradish peroxidase (GE/MWCNTs-HRP) was used to build a glyphosate biosensor whose performance in aqueous solutions depends on the enzyme activity. For the biosensor preparation, MWCNTs were deposited onto the GE surface by electrophoresis using an oxidative treatment (H2SO4/HNO3) in presence of cetyl tributylammonium bromide (CTAB) as a cationic surfactant. The surfactant was further removed from the MWCNTs surface by dipping the electrode in an EtOH/HCl solution. The physical immobilization of HRP and therefore the glyphosate sensing capabilities was tested at pH 4 where the herbicide exhibits one only species. Circular dichroism studies suggested that the secondary structure of HRP changes as a result of its interaction with glyphosate and that this change is intensified by the combination of glyphosate and H2O2, which may explain the decrease of the enzyme catalytic activity with the increase of glyphosate concentration. The glyphosate quantification in doped-maize kernels was highly reproducible and exhibits detection and quantification limits of 1.32 pM and 1.63 pM respectively. The biosensor is also characterized by a high recovery (100 %) and precision (coefficient of variation <1 %) and can be employed in presence of interfering substances such as chlorpyrifos (an organophosphate pesticide) and starch".
  • Artículo
    Indirect quantification of glyphosate by SERS Using an incubation process with hemin as the reporter molecule: a contribution to signal amplification mechanism
    (2020-12-18) López Castaños, Karen Alejandra; Ortiz Frade, Luis A.; Méndez, Erika; Quiroga González, Enrique; González Fuentes, Miguel Angel; Méndez Albores, Alia; López Castaños, Karen Alejandra; 0000-0002-7585-3505; Méndez, Erika; 0000-0001-6859-8959; Quiroga González, Enrique; 0000-0003-1650-0862; González Fuentes, Miguel A.; 0000-0003-0630-151X; Méndez Albores, Alia; 0000-0002-9047-8766
    "The indirect determination of the most used herbicide worldwide, glyphosate, was achieved by the SERS technique using hemin chloride as the reporter molecule. An incubation process between hemin and glyphosate solutions was required to obtain a reproducible Raman signal on SERS substrates consisting of silicon decorated with Ag nanoparticles (Si-AgNPs). At 780 nm of excitation wavelength, SERS spectra from hemin solutions do not show extra bands in the presence of glyphosate. However, the hemin bands increase in intensity as a function of glyphosate concentration. This allows the quantification of the herbicide using as marker band the signal associated with the ring breathing mode of pyridine at 745 cm−1. The linear range was from 1 × 10−10 to 1 × 10−5 M and the limit of detection (LOD) was 9.59 × 10−12 M. This methodology was successfully applied to the quantification of the herbicide in honey. From Raman experiments with and without silver nanoparticles, it was possible to state that the hemin is the species responsible for the absorption in the absence or the presence of the herbicide via vinyl groups. Likewise, when the glyphosate concentration increases, a subtle increase occurs in the planar orientation of the vinyl group at position 2 in the porphyrin ring of hemin over the silver surface, favoring the reduction of the molecule. The total Raman signal of the hemin-glyphosate incubated solutions includes a maximized electromagnetic contribution by the use of the appropriate laser excitation, and chemical contributions related to charge transfer between silver and hemin, and from resonance properties of Raman scattering of hemin. Incubation of the reporter molecule with the analyte before the conjugation with the SERS substrate has not been explored before and could be extrapolated to other reporter-analyte systems that depend on a binding equilibrium process".
logo_buap
social networkssocial networkssocial networkssocial networkssocial networks

Benemérita Universidad Autónoma de Puebla

4 sur 104 Centro Histórico C.P. 72000

Teléfono +52(222) 2295500 ext. 5013

Dirección General de Bibliotecas

Boulevard Valsequillo y Av. de las Torres

Ciudad Universitaria. Col. San Manuel

C.P. 72570

Teléfono +52 (222) 2295500 Ext 2901

logo_buap Copyright © Dirección General de Bibliotecas - BUAP 2024. All right reserved.