Extracción del parámetro de impacto de colisiones protón+protón con el experimento ALICE del LHC
Date
2024-11
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Benemérita Universidad Autónoma de Puebla
Abstract
"In high-energy proton-proton collisions, understanding the impact parameter is crucial for unraveling the underlying dynamics of particle interactions. This work explores the ex traction of the impact parameter using machine learning techniques in the context of the ALICE experiment at the Large Hadron Collider (LHC). We apply ML models (DNN and decision Trees) to predict the multiplicity of charged particles in relation to the impact param eter, leveraging simulated data generated by the PYTHIA 8.3 event generator. Our findings demonstrate the efficacy of machine learning algorithms in providing accurate estimates of the impact parameter, offering a new avenue for exploring particle collisions and expanding our understanding of quantum chromodynamics (QCD) in high-energy physics".
Description
Keywords
Citation
Collections
Document Viewer
Select a file to preview:
Can't see the file? Try reloading