Quantum convolutional neural networks for high energy physics

dc.audiencegeneralPublices_MX
dc.contributorPedraza Morales, María Isabel
dc.contributor.authorCervantes Guevara, Luis Roberto
dc.date.accessioned2022-11-15T21:56:54Z
dc.date.available2022-11-15T21:56:54Z
dc.date.issued2022-09-05
dc.description.abstract"Artificial Intelligence is a tool that is increasingly becoming an integral element of scientific research. High Energy Physics, whose experiments produce some of the largest amounts of data in science, is no exception. For this reason, the objective of this thesis is to develop a pipeline for classifying backgrounds and signals particle jets using Machine Learning (ML) techniques, specifically convolutional neural networks (CNN). Particle jets have proven to be a very powerful tool for studying particle collisions at accelerators such as CMS and ATLAS, at the LHC, where the constituents of these events hadronize or decay so quickly that they are very difficult to detect. Jets are objects that seek to retrieve information about these particles by encapsulating the energy depositions that were indeed sensed by the detector. So having an algorithm that can reliably tell us which particle generated a given jet is not a straightforward assignment, even more so taking into account that many approaches can be taken to this problem depending on the way in which we believe it is most convenient to arrange our data".es_MX
dc.folio20220906135353-6025-TLes_MX
dc.formatpdfes_MX
dc.identificator1es_MX
dc.identifier.urihttps://hdl.handle.net/20.500.12371/16897
dc.language.isoenges_MX
dc.matricula.creator201764607es_MX
dc.publisherBenemérita Universidad Autónoma de Pueblaes_MX
dc.rights.accesopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRAes_MX
dc.subject.lccPartículas (Física nuclear)--Investigaciónes_MX
dc.subject.lccAceleradores de partículases_MX
dc.subject.lccColisiones (Física nuclear)--Procesamiento de datoses_MX
dc.subject.lccInteligencia artificiales_MX
dc.subject.lccAprendizaje automáticoes_MX
dc.subject.lccRedes neuronales (Computación)es_MX
dc.subject.lccAlgoritmos computacionaleses_MX
dc.thesis.careerLicenciatura en Físicaes_MX
dc.thesis.degreedisciplineÁrea de Ingeniería y Ciencias Exactases_MX
dc.thesis.degreegrantorFacultad de Ciencias Físico Matemáticases_MX
dc.thesis.degreetoobtainLicenciado (a) en Físicaes_MX
dc.titleQuantum convolutional neural networks for high energy physicses_MX
dc.typeTesis de licenciaturaes_MX
dc.type.conacytbachelorThesises_MX
dc.type.degreeLicenciaturaes_MX
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
20220906135353-6025-TL.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format
Description:
Name:
20220906135353-6025-CARTA.pdf
Size:
195.51 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: