Quantum generative adversarial networks for high energy physics
dc.audience | generalPublic | |
dc.contributor | Pedraza Morales, María Isabel | |
dc.contributor | Varela Carlos, Enrique | |
dc.contributor.advisor | Pedraza Morales, María Isabel; 0000-0002-2669-4659 | |
dc.contributor.advisor | Varela Carlos, Enrique; 0000-0003-0715-7513 | |
dc.contributor.author | Díaz Lievano, Lázaro Raúl | |
dc.date.accessioned | 2025-06-17T19:32:04Z | |
dc.date.available | 2025-06-17T19:32:04Z | |
dc.date.issued | 2025-04 | |
dc.description.abstract | "The increasing computational demands of the High-Luminosity Large Hadron Collider (HL-LHC) have made quantum computing a promising tool for advancing high-energy physics (HEP) research. This thesis explores the application of Quantum Generative Adversarial Networks (QGANs) to address two central challenges in HEP: particle identification and data generation. Specifically, a dual-task QGAN model was developed using simulated data from Delphes, aiming both to distinguish real from generated events and to classify jets as either signal or background. The model integrates quantum generators and discriminators through TensorFlow Quantum and Google Cirq, thus enabling a hybrid architecture that combines quantum circuits with classical neural networks. As a result, the system achieved a classification accuracy of 90%, showing promising capabilities in mimicking real data distributions while simultaneously performing classification. However, it is important to note that this work does not claim quantum advantage, as the technology is still at an early stage. Nevertheless, the study demonstrates the feasibility of applying QGANs to computationally demanding HEP problems and suggests that, with further exploration into circuit design, data complexity, and scalability, quantum computing could serve as a complementary method to classical approaches in the HL-LHC era". | |
dc.folio | 20250402101800-5901-TL | |
dc.format | ||
dc.identificator | 1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12371/28893 | |
dc.language.iso | eng | |
dc.matricula.creator | 201910145 | |
dc.publisher | Benemérita Universidad Autónoma de Puebla | |
dc.rights.acces | openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.subject.lcc | Física--Física atómica--Teoría cuántica | |
dc.subject.lcc | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.lcc | Computación cuántica--Investigación | |
dc.subject.lcc | Partículas (Física nuclear)--Procesamiento de datos | |
dc.thesis.career | Licenciatura en Física | |
dc.thesis.degreediscipline | Área de Ingeniería y Ciencias Exactas | |
dc.thesis.degreegrantor | Facultad de Ciencias Físico Matemáticas | |
dc.thesis.degreetoobtain | Licenciado (a) en Física | |
dc.title | Quantum generative adversarial networks for high energy physics | |
dc.type | Tesis de licenciatura | |
dc.type.conacyt | bachelorThesis | |
dc.type.degree | Licenciatura |
Files
Original bundle
1 - 2 of 2

- Name:
- 20250402101800-5901-CARTA.pdf
- Size:
- 240.67 KB
- Format:
- Adobe Portable Document Format