La rigidez cuasi-isométrica de Z
dc.audience | generalPublic | es_MX |
dc.contributor | Hernández Hernández, Jesús | |
dc.contributor.advisor | HERNANDEZ HERNANDEZ, JESUS; 632236 | |
dc.contributor.author | Vaca Vaca, Catalina | |
dc.date.accessioned | 2020-03-10T18:44:05Z | |
dc.date.available | 2020-03-10T18:44:05Z | |
dc.date.issued | 2019-12 | |
dc.description.abstract | "Este trabajo presenta un primer ejemplo relativamente simple de estas técnicas de la teoría geométrica de grupos. Primero se recuerdan algunos preliminares de la teoría de grupos y grafos. Posteriormente, se trata a los grupos finitamente generados, se les asocia con un grafo de Cayley que resultara un espacio métrico con la métrico de las palabras. Luego se estudian algunas transformaciones geométricas a través de isometrías, encajes bi-Lipchitz y cuasi-isometrías. De estos se obtiene una relación entre la cuasi-densidad (una propiedad geométrica) y los subgrupos de índice finito (una propiedad algebraica). Más tarde, el teorema fundamental de la teoría geométrica grupos, también llamado el LemaSchwarz-Milnor, resulta ser un vínculo entre el índice finito y las cuasi-isometrías, que da pie a los problemas de rigidez cuasi-isométrica, que tratan equivalencias entre cuasi-isometrías y subgrupos de índice finito con alguna propiedad. Después de varios ejemplos particulares será natural preguntarse, para el caso específico de Z (un grupo cíclico infinito) qué grupos son cuasi-isométricos a Z y cuando un grupo contiene una copia isomorfa a Z de índice finito. La relación entre estas dos preguntas es lo que llamaremos la rigidez cuasi-isométrica de Z." | es_MX |
dc.format | es_MX | |
dc.identificator | 1 | es_MX |
dc.identifier.uri | https://hdl.handle.net/20.500.12371/4923 | |
dc.language.iso | spa | es_MX |
dc.matricula.creator | 201402252 | es_MX |
dc.publisher | Benemérita Universidad Autónoma de Puebla | es_MX |
dc.rights.acces | openAccess | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | es_MX |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | es_MX |
dc.subject.dbgunam | Teoría de grafos | es_MX |
dc.subject.dbgunam | Isometría (Matemáticas) | es_MX |
dc.subject.lcc | Teoría de grupos | es_MX |
dc.subject.lcc | Transformaciones (Matemáticas) | es_MX |
dc.thesis.career | Licenciatura en Matemáticas | es_MX |
dc.thesis.degreediscipline | Área de Ingeniería y Ciencias Exactas | es_MX |
dc.thesis.degreegrantor | Facultad de Ciencias Físico Matemáticas | es_MX |
dc.thesis.degreetoobtain | Licenciado (a) en Matemáticas | es_MX |
dc.title | La rigidez cuasi-isométrica de Z | es_MX |
dc.type | Tesis de licenciatura | es_MX |
dc.type.conacyt | bachelorThesis | es_MX |
dc.type.degree | Licenciatura | es_MX |